Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Low Latency Demodulation for Atomic
Force Microscopes, Part 11: Efficient
Calculation of Magnitude and Phase

Daniel Y. Abramovitch *

* Molecular Detection Lab, Agilent Laboratories, 5301 Stevens Creek
Blvd., M/S: 4U-SB, Santa Clara, CA 95051 USA, dannyeagilent.com

Abstract: This paper describes methods for doing high-speed, low latency, coherent demodu-
lation of signals for dynamic or AC mode in Atomic Force Microscopes (AFMs), Abramovitch
(2010). These demodulation methods allow the system to extract signal information in as
little as one cycle of the fundamental oscillation frequency. By having so little latency, the
demodulator minimizes the time delay in the servo loop for an AC mode AFM. This in turn
minimizes the negative phase effects of the demodulation allowing for higher speed scanning.
Part I, Abramovitch (2011), of the paper describes the mixing and integration portion of the
demodulator. This part describes efficient methods for extracting magnitude and phase. In
particular, the CORDIC method compared to optimized table lookup operations and a phase-
locked loop (PLL) based method. The latter two show a significant decrease in latency, with the
PLL based method generating the magnitude and phase with virtually no extra latency and a

significant savings in resources.

Keywords: Atomic Force Microscopes (AFMs), Mechatronic Systems, Demodulators, Real

Time Computation, Phase-Locked Loops (PLLs)

1. INTRODUCTION

Part I, Abramovitch (2011), of this paper describes how to
construct and efficient integrator for signal demodulation
on an AFM. This part will describe two methods for
efficiently computing the magnitude and phase of those
integrated signals. The first implements a minimal latency
table lookup with automatic scaling of signals. The second
method involves using a PLL to align the mixing signal
with the average phase of the return signal. In this case,
the magnitude and phase calculations are trivialized.

From Part I, Abramovitch (2011), of this paper, we know
that the process for estimating the integrals of the I and
@ branches of the signal with a digital demodulator are:

e Sample s(t) at rate fg = T%, to get s(k).

e Multiply s(k) by sin(2wfokTs) and cos(27 fokTs)
where fy is the frequency to be demodulated.

e Sum the mixed sample signals over an integer number
of oscillation periods to approximate the integrals of
Equations 3 and 4 with sums, I, and Qsum.

e Compute the magnitude and phase of the signal.

2. MAGNITUDE AND PHASE CALCULATIONS

Part I, Abramovitch (2011), gives an accurate estimate of
the in phase and quadrature integrals of the demodulation,
i.e., if

s(t) = Cy sin(wot + ¢1) + n(t) (1)
and
1(t) = s(t) sin(wpt) and Q(t) = s(t) cos(wot), (2)
Copyright by the

International Federation of Automatic Control (IFAC)

then
MT,
Tsym =~ ﬁ / I(t)dt =~ % cos(¢y) and (3)
wr,
Qun~ [Qs Gsinton. ()
0

The classic method of computing magnitude and phase
is from a coordinate transformation from rectangular to
polar coordinates , i.e.,

Iszum + qum and (bl = Arctan(qum) . (5)

ISU’ITL

Ci=2

The difficulty comes in the resources needed to compute
these relationships. For example, a highly efficient algo-
rithm is the so called CORDIC algorithms, Volter (1959);
Meher et al. (2009); Vadlaman and Mahmoud (2002).
These algorithms compute magnitude and phase by ro-
tating the frame of reference until the frame of reference
has a matching magnitude and phase. The CORDIC algo-
rithm is computationally simple, and is at the heart of the
trigonometric calculations in the original HP-35 calculator.
It is even available now in logic cores for FPGAs, Xilinx
(2009). However, they require one computational cycle per
bit of accuracy, so a 16 bit accuracy would require an extra
computational delay (on top of that done by the integral
itself) of 16 clock cycles. In a standard computer, this
might be considered fast, but in a DSP or FPGA which
typically complete table lookup operations, additions, and

12721

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

multiplies in one or two cycles, this is considered slow.
Alternately, some have chosen to offload the magnitude
and phase calculation to a DSP chip once the I and Q
branch demodulations are done, Proksch et al. (2007).

A more time efficient calculation involves a table lookup.
However with two different numbers to look up and the
high precision desired in these calculations, the tables
can become huge. A few well placed adjustments to and
restrictions of the calculation make it possible to use a
relatively small table to give reasonably good estimates.
The process for doing this involves two steps:

e Scaling the numbers so as to restrict the input range
of the table, and then unscaling them after the table
has been used.

e Interpolating between points in the lookup table using
extra bits from the calculation.

3. CALCULATING MAGNITUDE USING TABLE
LOOKUP

It is certainly possible to do a simple table lookup to com-
pute the magnitude, C7, from the left side of Equation 5.
The question becomes how to do this to efficiently make
use of memory. Looking at Equation 5 we note:

e Sums of squares of a number are easy to compute
using most computer hardware, including DSPs and
FPGAs which have built in hardware multiplies.

e Square roots are hard to compute quickly.

e The slope of the vz2 changes very rapidly near
22 = 0, which makes interpolation less accurate.

e Limiting the input range of the V22 lookup table to
the range from 0.5 to 2.0, makes v/z2 well behaved.

e Since I2,,, +Q?2,,, is in 2’s compliment notation, then
it will have one or more leading 0s.

We can minimize the entries in the table lookup by shifting
to the left until the leading two bits are 01, 10, or 11,
and keeping track of the left shifts. A left shift by 2n bits
effectively multiplies the number by 227. This pins the
number in the table to be between 0.5 and 2, i.e. if

xfn22n = (Is2um + Q?um) 22”7 then (6)
0.5 < 23 22" < 2. (7)

Once the square root of the shifted sum of squares is looked
up, we shift the result to the right by n bits, since

x? 22n \ai 22
y = 2"2n then y = g (8)

With a memory that has 2 locations, improved accuracy
can be achieved by splitting the address space and using
part of the values for interpolation. For example, with 2'°
locations, a lookup table of square roots of input values
between 0 and 2 has an accuracy of only 4 bits. Using 29
locations for lookup points and 2° locations for slopes to
do linear interpolation (for a total of 2!° locations) leads
to an accuracy of 6 bits the same number of memory
locations. Restricting the input range to being between
between 0.5 and 2 for a lookup table with 2'° locations
gives an accuracy of 9 bits. Using 2° locations for lookup
points and 29 locations for slopes to do linear interpolation

(for a total of 210 locations) gives an accuracy of 19 bits
as seen in Figure 1.

Comparison of Square Root Calculations

0.1F

0.05f

—— True Square Root

—— 10 bit Lookup, No Interpolation
—— 9 bit Lookup, Linear Interpolation

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
2

X

0

Zoomed In View

0.71F

0.705F

07 L L L L L L L " L
0.49 0492 0494 0.496 0498 05 0.502 0.504 0.506 0.508 0.51
2

X
Error in Lookup Methods

0.04

— 10 bit Lookup, No Interpolation
-9 bit Lookup, Linear Interpolation

e
Q
@

Errorin 1/X
o
o
N

o
2

00 005 01 015 02 025 03 035 04 045 05

Input X

Fig. 1. Comparison of table lookup and errors for +/z,
0.0 < x < 2. Plots are zoomed in to show more
interesting aspects of the data.

1/X,05<=X<1

——True 1/X
1.8F B - : - - “...} = No Interpolation
: H : : : © | ——Linear Interpolation

05 055 06 065 07 075 08 08 09 095 1
Input X

Zoomed In View

1.432F
1.43F
x

T 1.428f

1.426

0.698 0.6985 0.699 0.6995 0.7 0.7005 0.701 0.7015 0.702

Input X
-3 Error in lookup table for 1/X, 0.5 <= X < 1

Errorin 1/X

| —— No Interpolation, 9 bits accuracy
—— Linear Interpolation, 19 bits accuracy

05 055 06 065 07 075 08 08 09 095
Input X

Fig. 2. Comparison of table lookup and errors for %,
H<x <2

Making a relatively mild assumption that a single compu-
tation can be done in a single clock cycle of the FPGA or
DSP, the procedure and the estimated latency are:

1) Square Igym and Qsum (1 clock cycle).
2) Add them together yielding 22, (1 clock cycle).

12722

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

3) Shift left by the maximum even number of lead-
ing Os, (2n) to yield 22, ,,, where 0.5 < 2?2 , <
2 (1 clock cycle).
4) Look up the square root in a table (1 clock cycle).
5) (Optional) Look up interploation slope in table
(1 clock cycle, in parallel with other lookup).
6) (Optional) Interpolate square root value between
lookup points (2 clock cycles, 1 for multiply and
1 for addition).

7) Shift square root value right by half as many bits
as the previous left shift (n) (1 clock cycle).

n,2n n,2n

So, this table lookup computes the square root in 7 clock
cycles, irrespective of the number of bits in the input. For
data widths of greater than 7 bits, this is faster than the
CORDIC algorithm.

4. CALCULATING PHASE USING TABLE LOOKUP

We also need to compute the arctangent of digitally.
Again, the CORDIC may be too slow for our purposes and
we want to use a table lookup. We can limit the operation
to the first quadrant (0 < Q“‘f” < %) by keeping track of
the signs of the input values Sallnnd then simply working with
the absolute values. We then shift the result back into the
proper quadrant by some simple math.

Qsum
Tsum

The problem is that it is hard to be accurate in a table for
the Arctauan“m when I, is close to 0. However, we can
easily look up

Arccot < @sum)

sum

= g — Arctan (Lum >) (9)

sum

and so we operate in the first half of the first quadrant.
o If [Isum| = [Qsuml, then Arctan(l) = 7.
o If | Ium| > |@Qsuml, then lookup Arctan (Q—“)

sum

o If |Isym| < |@suml, then lookup Arctan (Q““" and

compute Arccot (%) — T _ Arctan (ésum)

2 sum

_/

Now, we see that before we can look up an Arctan, we
\qum\ sum|
U’VTL‘ |Q
whether |Qgym| or |ISum\ is larger. This means looking up

1 1

—— OT
[Qeum] ©

need to compute either

0 depending upon

[Tsum|

Say we want to compute the value % where X is the larger
of |Qsum| and |Isym|. We have to look up % in a table and

multiply this by Y. % is badly behaved when X is close

to 0, but we can shift both numerator and denominator:
Yy 2"y
Iz 1
X = oy (10)

so that the leading 0s in X have been eliminated. We have
already assumed that X > Y soin a 2’s compliment format
Y should have at least as many leading Os as X. This
means:

a) The value of 2"X in the lookup table for 1+ is
always between 1 and 2 so The looked up value
is always between % and 1.

b) (4)Y is always between 0 and 1.

c¢) Therefore the looked up and interpolated values
should be quite accurate as seen in Figure 2.
Without interpolation, the 2' location table
achieves 9 bits of accuracy. Splitting the table
into two 2° location tables where the first part
is for lookup and the second part is for linear
interpolation results in 19 bits of accuracy.

For simplicity, we can look up values between 0 and 1 and
scale them by 7 in post processing. So, our procedure is
as follows:

1) Compute |[Igum|, |Qsuml, g0 (Lsum), and sgn(Q sum)
(1 cycle).

2) Determine if |Igum| or |Qsum| is larger. If
[Isum| = |Qsuml, the Arctan is 1 (1 cycle).

3) Shift both |Isum| and |Qsum| left to eliminate
leading zeros in larger value (1 cycle).

4) Look up %, where X is the larger of |Isym| and
|Qsum| (1 cycle).

5) (Optional) Look up interpolation slopes for + (1
cycle).

6) (Optional) Interpolate values between lookup
points of & (2 cycles, 1 for mutliply and 1 for

addition).
7) Multiply + Y, where is the smaller of | Iy,
and \qumﬁ 1 cycle

8) Look up Arctan¥ where 0 < X <1 (1 cycle).
9) (Optional) Look up 1nterpolat10n slopes for
Arctan¥ (1 cycle).
10) (Optional) Interpolate values between lookup
points of Arctan% (2 cycles, 1 for multiply and
1 for addition).
11) Calculate Arccotss = Z — ArctanX- if needed (1
cycle).
12) Use sgn(Isym) and sgn(Qsum) to put the Arctan
or Arccot in the proper quadrant (1 cycle).

This computation takes 14 cycles, which is more than
the original integration from Part I, Abramovitch (2011).
However, it seems to be the fastest method of directly
computing the phase for any numbers of bits greater
than 14, unless one trivializes the magnitude and phase
operation. The next section shows how to do just that.

5. USING A PLL TO SIMPLIFY MAGNITUDE AND
PHASE CALCULATIONS

The previous sections on computing magnitude and phase
point out the issue that even the fastest methods of
computation generate a significant amount of serial steps
in the process. Assuming that each step can be done in
one computation clock cycle (not always the case with
FPGAs, and even more rare with DSPs), we still have quite
a few cycles. For fast sampling, this can be a large fraction
of a sample period. Furthermore, these calculations take
significant resources, either in time — if the computation
is done on a standard processor or a DSP — or in space if
the computation is done in programmable logic — such as
with a FPGA.

There is a way to circumvent these extra computations,
and this is by noticing that if the mixing signal is in phase
with the signal to be demodulated, then the magnitude
drops out trivially from the integral. In other words, if

12723

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

the I mixing signal is in phase with the signal to be
demodulated, then the Q mixing signal is 90° out of phase
meaning that on average, Qgsyum is very close to 0. This
means that the left side of Equation 5 is reduced to

Cl ~ 2\/ ISQum = 2lsum.

(11)

Phase Detector
H + Py
Asin(ot, +6) X Digital R Tgl,f'
,\/\N) () > Integrator;| Filter
A
Sampled !’hase
Reference Adjustment
Signal
cos(o.t, +0,) [Numerically
< Controlled |«
Sampled V\/V\ Oscillator
Signal

Phase-Locked
to Reference

Fig. 3. A digital mixing PLL including post mixing in-
tegration. Note that our demodulator mixes the in-
put signal with numerically generated sinusoids and
integrates them over an integer number of periods,
Abramovitch (2011). The end result is an output that
has very little of the 2X frequency component in the
classical mixing loop. In other words, the Q branch of
our demodulator calculates the phase error between
the input signal and the sinusoid.

Furthermore, in place of the right side of Equation 5,
we know that the average phase difference between the
return signal and our driving signal is equal to the phase
difference between our I mixing signal and our driving
signal, and this can be read off trivially. The integral of
Qsum has an elegant interpretation as the instantaneous
phase difference between the return signal and the average
phase. The difference between the phase of the mixing
NCO and the drive NCO represents the average phase.

However, since the average phase of the return signal is
unknown, we need some way to identify it. The classic
way is with a phase-locked loop (PLL). A block diagram
of a digital PLL is shown in Figure 3. Each PLL has a
reference signal and an oscillatory signal which will lock to
it, Abramovitch (2002). The oscillatory signal is presumed
to be at a frequency close enough to the reference signal so
that differences between the frequencies can be considered
phase errors. A phase detector extracts the baseband phase
difference between the two signals as well as some higher
frequency information to be filtered out. The properties of
the loop, set by the combination of the phase detector and
the loop filter, determine the phase changes that can be
followed and which changes will be treated as disturbances
to reject.

Looking at the details of Figure 3, the input signal is sam-
pled, just as our return signal from the AFM is sampled. A
sampled oscillatory signal is multiplied (mixed) with this
sampled signal and the output passes through the loop
filter to adjust the phase of the numerically controlled
oscillator (NCO), which generates the mixing signal. It
turns out that this is very similar to the form that we
already have in the demodulator.

Our demodulator mixes the input signal with numerically
generated sinusoids and integrates them over an integer

,\/\/V\l AC

Actuator

q Sine | Mag.
Sine —>(X)—> f »>| Filter 9
Drive VVVV

Deflection| DC

WA/ Removal

AC Demod

Optical
Sensor

“WW-

0

f g Filter
| _| PASine | Loop J

Phase
>

Y

WV\’ Cosine

Drive Filter

Fig. 4. Coherent demodulation for AFM using a PLL. DC
removal and post integration filtering included.

number of periods. The end result is an output that
has very little of the 2X frequency component in the
classical mixing loop. In other words, the Q branch of our
demodulator calculates the phase error between the input
signal and the sinusoid. All we need to add to the pieces
in our demodulator are the ability to adjust the phase of
the sine drive (our NCO) and a loop filter to regulate the
bandwidth of this loop adjustment.

A block diagram that shows the PLL as a part of the
overall demodulator is shown in Figure 4. We now see
that in the magnitude and phase computation blocks have
been eliminated by this method. From a delay point of
view, this means that the delay through the demodulator
is governed only by the integration portion. Furthermore,
the adjustment of the mixer’s phase by the PLL is done as
a sort of background process, outside the time critical flow.
Finally, the resources occupied by this method, whether
they be CPU time or space on a FPGA are far smaller
than the previous method.

Finally, it is often the case with AFMs that the equations
are written so that the driving sinusoid is considered
a cosine rather than a sine. This doesn’t change the
behavior, but does change the style of the mathematical
analysis.

6. PRE AND POST INTEGRATION FILTERING

If the integrals of Equations 3 and 4 were done in con-
tinuous time with infinite precision, then there would be
need to filter DC components or harmonics of the input
frequency. However, the sampling of the data means that
the sinusoids are approximated by a stair step function,
and the integration is approximated as described in Part
I, Abramovitch (2011), of this paper. This means the rejec-
tion of DC offsets and higher harmonics is not complete.
Several simple fixes, including DC removal and post inte-
gration filtering, improve the behavior of the integration

The DC removal can be accomplished using a high pass
filter, and there are several different methods available
for implementing this. For a discrete time ideal high pass
filter, we would have

alz—1)

Z—

(1-a)z

H(z) = =1- =1-L(z). (12)

In other words, a high pass filter can be implemented by
subtracting a low pass value from the original signal. While

12724

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

these are theoretically equivalent, there are some latency
advantages to the second method in that the low pass value
can be computed in the background (it changes slowly) and
only the subtraction is in the “latency” path.

Post integration filtering helps remove artifacts of the
integral approximation from the computed magnitude
and phase. In particular, harmonics of the original drive
frequency often show up, although at a greatly reduced
level. A notch filter, set at the frequency of the chosen
harmonic can be used. Alternately, an FIR filter similar to
the demodulator integrator is used. The main difference
is that in the FIR, there is that there is no mixing of
the input signals. The output of the demodulator is fed
into another integrator, which integrates over an integer
number of periods of the original wave. The effect is to null
all higher harmonics of the signal, but the FIR lengthens
the delay associated with the demodulator by at least half
the period of the original oscillation (depending upon the
length of the filter and the period of oscillation). A notch
filter implemented as a digital biquad only removes a single
harmonic at a time, but the added latency is fixed and
minimal (typically a few clock periods). In combination
with the DC removal, the notching of the 2fy, harmonic
closely approximates the performance of the FIR.

7. EXAMPLES

The demodulator architecture, implemented in FPGA
hardware, was simulated using ModelSim 6.6b Mentor
Graphics (2011), and signals of interest to this paper were
saved to an ASCII file. The ASCII data was normalized
using Matlab so that the number format was back in a
more convenient form. Also, small gain differences between
the T and @ phase outputs before and after filtering have
been normalized out. The last 20% of the data was used
to compute the steady state averages (u) and standard
deviations (o) of these signals. In these simulations, the
units of Q map to radians, since @ is used as the phase
error.

Figure 5 shows an 88 kHz oscillation frequency, sampled at
1 MHz. The effect of the PLL based demodulator is that
the mixing signals are shifted so that the in-phase (I) signal
aligns with itself with the average phase of the input signal.
The quadrature signal (Q) is aligns itself so that it is 90°
out of phase with the average of the input signal. Thus,
the magnitude calculation is obtained trivially from the in
phase integral. This simulation has no offset in the level
of the deflection (input) signal, but a +30° phase offset.
Figure 7 show a similar simulation but with an offset of 0.1
and a —179° phase offset. Note how the PLL lock signal
corresponds to the mixing signals being close enough to
ideal in-phase and quadrature such that I and Q equal the
magnitude and phase.

Figures 6 and 8 show the effects of using post integration
filtering on the demodulated signals. In particular, Fig-
ure 6 which has particularly small phase error throughout,
is scaled such that one can really see the improvement of
the filtered signals.

The top plots of both figures show the I branch, while
the lower plots show the Q branch. The unfiltered output
of the demodulator is shown in blue. That output, post

Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset 30 Deg, Offset: 0.0

0.5
c |
S I
8 o0 |
°©
a
_05 L L L L L L L L
0 0.5 1 15 2 25 3 3.5 4 4.5 5
Time (s) x107*
Demod | Branch and Magnitude
0.4 T T T T T T
P :
T 0.3
S :
© : - - - - - : :
Eoq : 1., (mag): 0.2500, o(Mag): 0.0017 i Demod |
=z : 1, (1): 0.2500, o(1): 0.0018 Magnitude
: - - - - - - ——PLL Lock
0 L R R R R R L L L
0 0.5 1 15 2 25 3 35 4 45 5
Time (s) x107*
Demod Q Branch and Phase
6 T T T T T T T T T
: : : : : : : —— Q Demod
2 : u__(Phase): 0.0026, 6(Phase): 0.0453] Phase
g 4 B s] ——PLL Lock |
5 : \L__(Q): —0.0141, 5(Q): 0.0018 : - -
(7] : s : : :
N :
s :
£ : :
5 oft—
2 B B
0 0.5 1 1.5 2 25 3 35 4 45 5

Fig. 5. Output of ModelSim Simulation of FPGA based
demodulator. The oscillation frequency is 88 kHz.
The normalized deflection amplitude is 0.25. There
is no offset in the signal level, but the phase of the
signal driving the deflection is 30° ahead of the in-
phase (sine) mixing signal at the beginning of the
simulation. Note how the I and Q phases converge to
the magnitude and instantaneous phase, respectively.

Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset 30 Deg, Offset: 0.0

0.3 T s

0.2f [

- : u_.(1):0.2500, (1): 0.0018
0alf] i i i) 02500, 6(1): 0.0000 L]—1
7 ,u“ |N°‘?h): 0.2590, 0('N9‘cn)3 o.qooo : : ’lf‘lg:(:h
0 05 1 15 2 25 3 35 4 45 5
Time (s) x10™
. (Q): ~0.0141,6(Q): 0.0018 — Raw
0.02 " ie(Qp)t ~0.0145, 6(Q): 0.0001 QFIR]
0.01 r Q) ~0.0143,6(Qy .,): 0.0001) ... —— Q Noteh |

Fig. 6. Output of ModelSim Simulation of FPGA based
demodulator. The oscillation frequency is 88 kHz.
The normalized deflection amplitude is 0.25. There
is no offset in the signal level, but the phase of the
signal driving the deflection is 30° ahead of the in-
phase (sine) mixing signal at the beginning of the
simulation. This plot shows the effect of adding post
post integration filtering to the demodulator.

processed with an FIR filter which removes all the har-
monics of the oscillation frequency, are shown in green.
Looking at the Q outputs which are zoomed in due to
the small size of output signals, we can see that the
unfiltered demodulator outputs have a component at twice

12725

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset -179 Deg, Offset: 0.1

<
8
g 0 |
°
a
_05 L L L L L L L L L
0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (s) x107*
Demod | Branch and Magnitude
0.5 T T T T T

s(mag): 0.2500, 6(Mag): 0.0017

Peoamas

Normalized Signals
(=]

s — 1 Demod
. (1): 0.2500, o(1): 0.0018 —— Magnitude
: - - - - - . ——PLL Lock
_05 L R R R R R L L L
0] 0.5 1 1.5 2 25 3 35 4 45 5
Time (s) x107*
Demod Q Branch and Phase
50 T T T T T T T T
: - - - - - : —— Q Demod
2 : u__(Phase): 0.0026, 6(Phase): 0.0454] - —— Phase
< : S8 A . : ——PLL Lock
) : L__(Q): -0.0141, 6(Q): 0.0018 - =
(7] : s :
g o
© :
|
o
z
_50 L L L L L L L L L
0.5 1 1.5 2 25 3 35 4 45 5
Time (s) X107

Fig. 7. Output of ModelSim Simulation of FPGA based
demodulator. The oscillation frequency is 88 kHz.
The normalized deflection amplitude is 0.25. There
is a normalized offset of 0.1 in the signal level, and
the phase of the signal driving the deflection is 179°
behind that of the in-phase (sine) mixing signal at
the beginning of the simulation. Again, the I and Q
phases converge to the magnitude and instantaneous
phase, respectively.

Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset -179 Deg, Offset: 0.1

0.4
- ., (1): 0.2500, o(1): 0.0018 : :
- Hlleg): 02500, ol):0.0000 | - —: on N
b (o) 0:2500, 6(l):0.0000] - R
0.4 N N N N N N N I
05 1 15 2 25 3 35 4 45 5
Time (s) x107*
0.3 - - : :
u,,(Q): 0.0141, 5(Q): 0.0018 — Raw
0.2 (@) -0.0145, 6(Q;,): 0.0001 f—aqFR H
o el Qygien): 00142, 6(Qy) 0.0001 | ——Q Noteh |
o L - - - - ! . T
0
-0
0. N N N N N N N N N
0 05 1 i5 2 25 3 35 4 45 5
Time (s) X107

Fig. 8. Output of ModelSim Simulation of FPGA based
demodulator. The oscillation frequency is 88 kHz.
The normalized deflection amplitude is 0.25. There
is a normalized offset of 0.1 in the signal level, and
the phase of the signal driving the deflection is 179°
behind that of the in-phase (sine) mixing signal at the

beginning of the simulation.

the oscillation frequency, fo. Thus, a simple notch filter,
shown in red, can be used to remove this component from
the output. The choice between the FIR and the notch de-
pends upon the number of harmonics that one is concerned
with versus the additional computational latency that one
is willing to accept. However, in this case, the notch at 2f

performs indistinguishably from the FIR, and the latency
is clearly less than the FIR, although slightly more than
the unfiltered results.

One more signal of interest is the PLL locked indicator.
This is applied in the demodulator when the integral of
the T branch stays positive and significantly larger than
the absolute value of the Q branch integral. Note that
once this signal becomes positive, the I branch integral is
very close to the input signal magnitude.

8. CONCLUSIONS

This paper has described a very low latency demodulator
for use in dynamic mode control of Atomic Force Micro-
scopes (AFMs). Part I, Abramovitch (2011), described the
mixing and integration portion of the demodulator. This
part described efficient methods for extracting magnitude
and phase. Together, they perform operations that extract
the magnitude and phase of return signals with high fi-
delity, but minimal latency. This, in turn, solves one of
the more difficult problems in speeding up dynamic mode
operation of AFMs.

REFERENCES

Abramovitch, D.Y. (2002). Phase-locked loops: A control
centric tutorial. In Proceedings of the 2002 American
Control Conference. AACC, IEEE, Anchorage, AK.

Abramovitch, D.Y. (2011). Low latency demodulation
for atomic force microscopes, Part I. Efficient real-
time integration. In Proceedings of the 2011 American
Control Conference. AACC, IEEE, San Francisco, CA.

Abramovitch, D.Y. (2010). Coherent demodulation with
reduced latency adapted for use in scanning probe
microscopes. United States Patent 7,843,627, Agilent
Technologies, Santa Clara, CA USA.

Meher, P.K., Valls, J., Juang, T.B., Sridharan, K., and Ma-
haratna, K. (2009). 50 years of CORDIC: Algorithms,
architectures, and applications. IEFE Transactions on
Clircuits and Systems — I:Regular Papers, 56(9), 1893—
1907.

Mentor Graphics (2011). ModelSim. Mentor Graphics,
www.mentor.com/products/fpga/simulation/modelsim.

Proksch, R., Cleveland, J., Bocek, D., Day, T., Viani, M.,
and Callahan, C. (2007). Fully digital controller for
cantilever-based measurements. United States Patent
7,234,342, Asylum Research Corporation, Santa Bar-
bara, CA USA.

Vadlaman, S. and Mahmoud, W. (2002). Comparison of
CORDIC algorithm implementations on FPGA families.
In Proceedings of the Thirty-Fourth Southeastern Sym-
posium on System Theory, 2002., 192—-196.

Volter, J.E. (1959). The CORDIC trigonometric comput-
ing technique. IRE Transactions on Electronic Compu-
tation, 8, 330-334.

Xilinx (2009). CORDIC v4.0.

www.xilinx.com.

Xilinx Corporation,

12726

