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The Continuous Time Biquad State Space Structure

Daniel Y. Abramovitch*

Abstract— State space models of highly flexible systems can
present severe numerical issues. The models derived from
physical principles often lack structure. Canonical form models,
are compact, but obscure any physical structure and can have
coefficients that are highly sensitive to model parameters. In
[1] we discussed discrete state space structure that allowed for
minimal latency estimation and control while preserving the
numerical properties of biquad filters. In this paper, we discuss
a continuous time version, suitable for modeling from physical
principles.

I. INTRODUCTION

Fig. 1. The discrete time, Biquad State Space structure as described in [1].

State space models of highly flexible systems can present
severe numerical issues. The models derived from physical
principles often lack structure and have large parameter sets.
On the other hand, canonical form models [2] reduce the
number of parameters (and therefore computational opera-
tions) to a minimum set equivalent to those in a transfer
function form. However, in doing so for anything more
sophisticated than a second order model, most — if not all
— physical intuition is lost. Furthermore, the compaction
of these parameters into a canonical set often results in
parameters that are highly sensative to small changes in
the underlying physical parameters. Such models often fail
when used with systems of higher order. Furthermore, even
if the models are usable in continuous time, they can become
even more sensitive and far less physical once the system is
discretized. This is particularly true for mechatronic systems,
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which often are characterized by a “rigid body” model
followed by multiple sharp resonances and anti-resonances.

All of this creates a situation where state space approaches
are used only by experts in the field, while more basic,
physically intuitive approaches continue to dominate in in-
dustrial applications. These intuitive methods may work fine
when the system is low order, but they break down as the
system complexity rises. What is needed is a form that
can capture higher order dynamics in a way that maintains
physical intuition and preserves numerical accuracy through
the discretization process.

This paper presents a new state space form, the analog
Biquad State Space, based on the multinotch structure [3],
[4]. The Biquad State Space (BSS) ! has several desirable
characteristics:

o It uses a structure based on a serialized biquad filters
which can be physically matched to resonance/anti-
resonance pairs observed in measurements.

o The number of parameters is comparable to that of a
canonical form, although many appear multiple times
in the matrix structures.

o The basic structure remains the almost the same through
discretization.

e The underlying biquad structure leads to a state
space structure that is numerically very stable, even
through discretization. The A-parameters from the
multinotch [4] can be used to improve the numerical
accuracy of discretized coefficients [1], allowing this
form to be implemented in fixed point math, such as
that found on inexpensive DSP chips and FPGAs.

The Biquad State Space (BSS) was introduced in [1]
discrete time, state space form that allowed the numerical
resiliancy of serial cascades of biquad filters to be moved
into the state space world, while allowing for precalculation
(Figure 1). This gave the structure excellent numerics and
fixed and low latency, as previously described in [3]. The
numerical robustness shown there is useful, even when
minimal latency control was not an issue.

The rest of the paper will be organized as follows. Contin-
uous time biquads will be discussed in Section II. The analog
Biquad State Space form will be described in Section III. The
invariance of the BSS under discretization will be discussed
in Section IV. Some discussion of the matrix form will be
in Section V. Discussion of lack of direct feedthrough will
be in Section VI. Finally, Section VII gives some examples
that show the effectiveness of the BSS in modeling flexible

'Some have suggested Abramovitch State Space, but it suffers from a
bad acronym.
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dynamic systems, such as mechatronics.

While the structure is quite regular and works for large
or small numbers of biquads, the regular pattern becomes
obvious in the three biquad case. Thus, most of the structural
equations will be three biquad ones. The format considera-
tions of this will mean that many of these matrix equations
are in two column figures, but seeing the matrices in this
way makes the structural properties fairly obvious. This will
result in some of the larger equations being pushed into two
column figures.

II. CONTINUOUS TIME BIQUADS
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Fig. 2. An nth order continuous-time, polynomial filter in Direct Form II
configuration similar to the discrete-time filter form in [1], [5].

A standard Single-Input, Single-Output (SISO) transfer
function is shown in Figure 2, and represented as transfer
function by

Y(s) _
Uls)
We can consider such high order polynomial transfer func-

tions as filter models and factor these into a series of biquad
filters such as:
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If n is even, then the number of biquads, m is set to n/2. If
n is odd, then there are are (n 4 1)/2 biquads, but the last
one is first order filter (by setting by, 2 = Gy,,2 = 0. As was
shown in [3], [1], there can be advantages to factoring out
the direct feedthrough gains, resulting in
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where b” = 0 = 0 and b;; # 0, then the
factored out gam is b;1. Likewise if both b;o and b;; are O,
then then the factored out gain is b;s.

If we call this transfer function H(s), then H(s) =
bmo - - - broboo H (s) which gives:
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Again, if one of the b;p terms is 0 it is replaced by the first
non-zero b;; or b;o term.
Returning to a more modal representation, a single biquad
can be represented as:

B(s):K(

which in turn can be represented in a two step differential
form as:

% 4+ 26, wns + w%
) (5

82 + 26qwas + w3

T 4+ 2¢qwgl + wa =u

y = K (at + 26, W T + widw) ©)

This can be represented in state space form as:
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and

but we need to get rid of & and get the output in terms of
the actual state vector:

K [ 26w, wﬁ][x]

y = T
—K [ 2¢4wq WZ]{;C}_F{IO(]U :
y = [ K(26wn — 250wa) K(”i“’gl)][axc}
5]

(10)
What is important in this structure is that the output depends
on the first two states and the input. In this case, the input
can feed through directly. Now, we would like to move this
to a more general form such as we had in [3] and [1], so we
replace these resonance parameters with filter coefficients:

][ (5] ]

while the state output equation is given by:

(1)
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Finally, the properly scaled output is generated via:

[y ]=[b0 ][9]

13)
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Fig. 3. The analog biquad cascade, with factored out b; o terms and scaling
the output of each block. This is completely analogous to the digital form
of Figure 1.

III. THE ANALOG BIQUAD STATE SPACE FORM

If we have multiple biquads of the form shown in Equa-
tions 11, 12, and 13, we can chain these together by noting
that:

u; = :Iji, for 0 <i< n,
w = wu, and (14)

If one is willing to go through the algebraic pain and
suffering of applying Equation 14 to each biquad structure
a very regular state space structure results. For a 3-biquad
model (with no b;p = 0), we get the state equation of 15.
The unscaled output is in Equation 16, both displayed in
Figure 4 due to their size. Finally, the properly scaled outputs
are generated via:

Y2 b20b10boo 0 0 )
Y| = 0 bioboo 0 71 o))
n 0 0 boo Yo

This structure has a very regular iteration which continues
with the addition of extra biquads. It is worth noting several
properties of this structure.

o First of all, it is a relatively sparse structure where a lot
of the multiplies are 1.

o Secondly, we have put off multiplying by gain terms
until the end. This provides the same input output
behavior as the transfer function model, although the
internal states may not be scaled the same way as the
internal signals in the biquad chain. We will discuss
alternate choices of where to assign gain scaling in [6].

o The eigenvalues of the state matrix are still defined by
the denominator terms of the transfer function, and these
show up in the “block diagonals” of the state matrix.

o The off diagonals contain differences of the numerator
and denominator coefficients. Proper selection of these
terms can minimize these differences and keep the size
of the off diagonal terms well constrained.

It is~ worth discus§ing what it means to select these terms,
the b;; — a;1 and b;s — a;2 terms. In the case of a biquad,

2
— Wiq-

(18)
This structure then allows the designer to pick pole/zero or
resonance/ant-resonance combinations that minimize the off
diagonal terms in the system matrix, the b;1 —a;1 and bjo—a;o
terms, as well as their effect on the output.

What we will see in the next section, is that the biquad
matrix structure is the same for discrete time biquads,
although the physical interpretation of the coefficients is
different. However, it is helpful to keep in mind the similarity
of the numerical structures.

2
bi1 — a1 = 2GinWin — 2Giqwiq and bz — a;p = wy,

IV. DISCRETIZATION OF THE ANALOG BSS

One major difference in using the BSS compared to
general textbook methods is that we choose to discretize
the BSS on a biquad by biquad basis. While this looses
the satisfaction of analytical mathematical exactness, it does
have the following positive properties:

1) Discretization approximations, and therefore dis-
cretization errors, are on a biquad by biquad basis.
This has the potential to bound the error growth as
the number of biquads (and therefore the number
of states) grows.

2) The discretization method most appropriate to
any one biquad can be applied independently of
how adjacent biquads are discretized. For exam-
ple, with lightly damped resonance/anti-resonance
pairs, the pole zero mapping used in [3] and the
A coefficients of [4] work extremely well. On
the other hand, representing a double integrator
as a discrete biquad can be accomplished using
a Trapezoidal Rule equivalent [7] as described in
[1].

3) Moreover, discretizing on a biquad by biquad
basis means that the digital BSS for a given system
has largely the same block structure as its analog
BSS.

If one considers debugging a physical system, the importance
of the last item cannot be overstated. The “invariance under
discretization” means that a discrete state space model can
be compared to an analog state space model or to modal test
points on a physical system. It means that we can closely
relate the digital state space model to the physics of the
problem, and therefore to physical measurements of real
systems.

V. THE MATRICES, RELOADED

Generating coefficients from continuous time biquad pa-
rameters is discussed in some detail in [3] and [4]. Suffice
it to say that continuous time, physical parameters can be
mapped into the discrete time biquads which form the basis
of our state matrices.

The state transition matrix in Equation 15 has a very
regular, block upper triangular form. On the block diagonals
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Fig. 4. State equations for continuous time biquad state space with scalar output scaling.

are 2 x 2 blocks with the biquad denominator parameters
(from which we can extract the model poles). Below the
diagonal blocks are empty, while above the diagonal blocks
is a repeated set of 2 x 2 blocks with Os on the lower rows
and

[ big —

a1 bio—ais | (19)

on the top row. The top rows of these blocks represent the
feedthrough of the biquad states to the other states. Likewise
in the output matrix of Equation 16, these same subsections
in (19) represent the feedthrough of the biquad states to the
outputs. Note that in both of these matrix equations, the input
is passed unscaled to the states and unscaled outputs. The
gain scaling is applied in (17).

Note that while these matrices are denser than a typical
canonical form, many of the needed multiplications and
additions are repeated, so that proper coding of the state
and unscaled output updates makes this form no more
computationally intense than a canonical form.

The above the block diagonal blocks are governed by the
terms in (19), and these terms are determined by how the
overall system model is partitioned into biquads. One way to
minimize these terms is to arrange the pole-zero groupings so
that each biquad consists of poles and zeros that are closest
to each other.

VI. HANDLING LACK OF DIRECT FEEDTHROUGH

One of the nice properties of the BSS is that it han-
dles direct feedthrough from the input to the output in a
systematic structure. In the discrete time world, we can
provide direct feedthrough for models of analog systems
by choice of discretization method. For example, the analog
double integrator inserted into the discrete BSS in [1] was
discretized with the Trapezoidal Rule approximation, which
gave it direct feedthrough. In the analog world, the rationale
for this does not exist and since most mechatronic systems
have some sort of low frequency behavior that has a pole
zero excess (e.g. double integrator, simple resonance), we
need to know how to accommodate this.

Fig. 5. Analog biquads without direct feedthrough. On the left, b;o = 0. On
the right, both b;p and b;; = 0. In either case, the leading gain is the gain
of the highest order numerator term that has a non-zero coefficient. In either
case, the lack of direct feedthrough means that the output is only determined
by the state of the block. All downstream blocks from this one will not have
direct feedthrough from the cascade input to the cascade output.

Figure 5 shows two examples of biquads tasked with
modeling such systems. On the left side is a biquad model
for a system where only b;o = 0. This would model a pole
zero excess of 1. On the right, both b;p and b;; are 0. In
either case, we factor out the non-zero b;; corresponding to
the highest order. This will be used in our downstream gain
calculations. Note that when any such biquad is in the chain,
the direct feedthrough from the system input, u, to any of
the downstream inputs and outputs, u; and y;, for j > 4 and
k >4, is 0. This affects the form of our state matrices.

In both cases, the state equation from (11) is unchanged.
However, the state output equations change a lot. In the left
hand case, Equation 12 becomes

(o ]=(1 b ]| 5]+ 100w o
where bjo = bis/b;1 and (13) becomes:
v [ =Tba ][] 21
In the right hand case, Equation 12 becomes
(al=lo ][ 2] el0ln @
and (13) becomes:
v [=Tba2 ][5 ] (23)
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This may seem like an awful lot of bookkeeping for such
a simple concept, but doing this bookkeeping allows us to
maintain a the overall system structure, which allows us to
write scripts and programs to build up BSS matrices from
individual biquad models.

To illustrate this, consider a 4-biquad system model. We
choose b,y = 0 for biquad 1. (Here the first biquad in
the chain is biquad O and the last one is biquad 3. Again,
algebraic pain and suffering results in a very regular state
space structure. For our 4-biquad model, we get the state
equation of 24. The unscaled output is in Equation 25, both
displayed in Figure 6 due to their size. Finally, the properly
scaled outputs are generated via:

Y3 b30b20b12:b00 0 0 0 73
Y2 | _ 0 b20b14:b00 0 0 U2
Y1 o 0 0 b12boo 0 U1
Yo 0 0 0 boo :l]o
(26)

where bw: = bil if bil 75 0 and bm = big if bil = 0. In
Equations 24 and 25 by; = 1 and byy = b1 /by if byg = 0
and by; # 0. Similarly, if b1p = 0 and b;100, then b1y = 0
and b1, = 1. Note that the direct feedthrough from the input
to any outputs downstream of biquad 1 is blocked. Also note
that direct feedthrough of any states upstream of biquad 1 to
any states downstream of biquad 1 is also blocked. Like the
input, those states affect the downstream states through the
output of biquad 1. However, it is clear that they still have
a regular structure.

VII. EXAMPLES

Biquad SS Versus Matlab Series Discrete State Space (8 biquads)
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Fig. 7. Comparison of Bode plots from continuous and discrete BSS,

as well as standard discrete transfer function and state space forms. The
conventional methods fall apart with 8 biquads, while the BSS methods
retain their numerical integrity.

In order to demonstrate the numerical improvements aris-
ing from the biquad state space structure, some simple exam-
ples were generated in Matlab. A serial biquad structure was
generated from resonance and anti-resonance parameters.
The natural frequencies of the resonances were logarithmi-
cally spaced between 10 Hz and 2000 Hz, while the natural
frequencies of the anti-resonances were spaced between 15
Hz and 2500 Hz. Numerator and denominator damping

Biquad SS Versus Matlab Series Continuous State Space (52 biquads)
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Fig. 8.  Comparison of Bode plots from continuous and discrete BSS, as
well as standard continuous transfer function and state space forms. All the
methods retain numerical integrity with 52 biquads.

Comparing Analog and Digital Biquad Intermediate Outputs (3 biquads)
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Fig. 9. Comparing analog and discrete BSS outputs. With 3 biquads, the
outputs of each analog biquad section was plotted against it’s digital version.
This demonstrates the invariance of the biquad outputs under discretization.

factors were set at 0.01. The sample frequency was chosen at
8 kHz for the discrete biquads. The script could then specify
any number of resonance/anti-resonance pairs to fill that
frequency range. As the baseline, the frequency responses
of each individual biquad was generated and these responses
were summed to create a composite response. Since the
responses were generated from individual biquads, it was
thought that they would be less susceptible to numerical
issues.

In order to compare the biquad state space to more con-
ventional methods, the resonance/anti-resonance parameters
were then used to generate both transfer function models
and state space models in Matlab. The linear system con-
catenation functions were used for both of these. From these
high order models, Bode plots were generated to compare
to the composite Bode plots described above. These are
the “standard” or “conventional” methods. Similarly, model
terms were used to construct both continuous and discrete
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biquad state space structures and again, Bode plots were
generated. Note that these plots are not made using fixed
point math, but with all terms represented in Matlab’s dual
precision floating point format.

Figure 7 shows an 8 biquad case where the conventional
discrete time structures (transfer function and state space)
have numerical difficulties. Note that both continuous and
discrete BSS structures produce plots right on top of the
composite plots.

In Figure 8 the composite plots and continuous and
discrete BSS structure plots are compared to conventional
continuous methods. In this case all methods produce iden-
tical plots, even with a 52 biquad structure.

Figure 9 plots a 3-biquad structure, and in this case we
plot neither conventional methods nor the composite plots.
Instead we tap off the individual biquad outputs of the first,
second, and third biquads so that we can demonstrate the
almost exact match of the discrete biquads to the continuous
biquads.

As mentioned earlier, this “invariance under discretiza-
tion” is a very useful property. In particular, it allows
one to construct an analog model from physical principles,
convert this model to an analog Biquad State Space form,
convert that to a discrete time Biquad State Space form for
implementation, and then easily extract information about
the continuous model from the discrete model results.

VIII. CONCLUSIONS

The biquad state space (BSS) form adapts the multinotch
filter [3] for state space use, preserving the latter’s excellent
numerical properties, as described in [1]. Even when doing
off line modeling, the examples in Section VII demonstrate
how the BSS preserves numerical fidelity in the state space
model. It also preserves the physical intuition of the analog

State equations for continuous time biquad state space with scalar output scaling. Biquad 1 lacks direct feedthrough.

parameters in the digital state space matrices, which is
extremely helpful in debugging physical systems. Moreover,
both the continuous BSS and the discrete BSS of [1] have
a regular and repeatable structure, as with a canonical form.
This makes it relatively straightforward to generate the
matrices from modal parameters in an automated fashion.

(The author would like to thank Eric Johnstone of
KeySight Technologies (formerly Agilent) for the inspiration
for this project, as well as his skill using Maple to debug
algebraic typos.)
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