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A Unified Framework for Analog and Digital PID Controllers

Daniel Y. Abramovitch*

Abstract—This paper presents a unified framework for
considering analog and digital PID controllers by tying them
to second order linear models. While no one item in this is
novel, the unified treatment allows one to more rationally select
PID parameters from loop shaping desires. Furthermore, the
treatment leads to some simplified understanding of popular
implementation choices for PID controllers.

I. INTRODUCTION

One cannot examine most industrial control environments
without tripping over simple controllers of all sorts of
specifications broadly labeled as PIDs (Proportional-Integral-
Derivative Controllers). This paper attempts to place these
slightly different forms into a common framework. Issues of
discretization and PID design from filter design are addressed
in a coherent way. Furthermore, PID implementations are
increasingly digital, since the explosion of incredible pro-
cessing capabilities in low power and low cost packages
such as the Raspberry Pi [1] and the Xilinx Zynq [2] means
that real-time processing is available for even the cheapest
application. Nevertheless, virtually all descriptions of PID
controllers are in continuous time [3], [4]. Even in digital
control texts [5], [6], [7], the only discretization used is a
backwards rectangular rule, without explanation of why this
was chosen. This is curious, since backwards rectangular
rule equivalents are so absent of discussions of control as
to only be available in Matlab when using one of its PID
specific tools. This may result from many applications such
as process control [8] being slow enough — compared to
the digital hardware — that almost any discretization will
work, but this author has worked mostly in mechatronics
in which the dynamics are significantly more in frequencies
affected by the discretization phase hit [9], [10], [11]. This
and the fact that discrete PIDs often maintain the structure in
firmware of three separate blocks rather than a second order
filter, has caused a further examination of these aspects from
a practical view.

Furthermore, the specification of PID controllers follows
several different conventions, both in the literature [3], [6],
[7], [12], [13], [14] and in the commercial specifications. For
the purchaser of a commercial PID system, this can make
modeling of the system difficult, as the controller can’t be
modeled without knowing the specification used.

While loop shaping descriptions of PID controllers have
been used in many references [8], [12], [15], [16] (among
others), the philosophy here is to take the loop shaping
specifications (alternately described as filter needs [9]) and
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return them to the three distinct PID terms. This is because
in practice, most PID controllers are accessed via the three
terms, allowing for practical nonlinearities such as anti-
windup to be instantiated. Thus, while knowing how to go
from analog PID coefficients, Kp, K, and Kp to a loop
shaping filter is useful, knowing the reverse path from the
loop shaping filter to the analog and digital PID coefficients
is far more practical. Finally, these relationships can easily
be encoded into design tools such as Matlab, to allow rapid
translation from the analysis to the implementation.

The rest of this paper is organized as follows. Section II
introduces a framework for different analog PID controllers.
Section IIT discusses different regions of action for a PID
controller on a characteristic mechatronic response. Sec-
tion IV discusses relationships between a classic PID con-
troller specification (without derivative filtering) and some
second order filters. Section V repeats the analysis in Sec-
tion IV, but with a low pass filter on the derivative section.
Section VI discusses the effects of various discretization
schemes on the PID.

II. PID CONTROL

Four basic versions of analog PID control equations show
up in the control literature and in commercial PID con-
trollers. In the time domain representation those forms are:

t
er(t)+%1/ e(r)dr + KpTpe(t), (1)
0

t
Kpe(t)+ Kr; / e(r)dr + Kpé(t), (2)
Jo

¢
Kpe(t) + %/ e(t)dr + KpTpz1(t), 3)
0

t
Kpe(t) + Kl,i/ e(t)dr + Kp;22(t), (4)
0

where e(t) error input to the controller, u(t) is the controller
output, and

l"l =é— ﬂl‘l and 152 =é— aixra. (5)
Tp
In the frequency domain the four forms for C'(s) = ggg
are:
K
C(s) = Kp+ ——+ KpTps, (6)
T]S
Ky,
Cls) = Kp+—"+Kps, (7)
K[ TDS
C(s) = Kp+—LiyKp—P% 8
(S) P+T]S+ DTDs+a1 ®)
K,
C(s) = Kp+ - 4 Kpi——. )
S S+ ay

1492



For ease of explanation, we will keep to the frequency
domain forms. In 8 and 9 we have chosen the derivative
filter gain so that — in combination with the derivative — it
has a high frequency gain of 1. We could also have chosen
to a filter with DC gain of 1. The four forms are chosen by
picking two options:

« explicit time specification and

« differentiator filtering.

Explicit time specification simply refers to whether the 77
and Tp terms are present, or whether they are absorbed into
K7 and Kp, respectively. It is perfectly legitimate to have

Kii=— and Kp,;=Kplp, (10)
where K;; and Kp,; can be considered “implicit time”
versions of the integral and differential gains. Alternately,
the designer can easily go from explicit to implicit time
simply by setting Tp = 177 = 1. However, leaving the 77 and
Tp terms in the equation give the designer some flexibility
and also allow these terms to drop out when the discrete-
time PID is generated. In particular, for the backward rule
equivalent of an ideal PID controller with the sample period,
T = T = Tp, the time terms drop out of the equation,
making it appear much simpler.

The second option is differentiator filtering. We know
that any practical analog differentiator will eventually roll
off. It should make sense to explicitly include this in the
controller design, but this is not common. Perhaps designers
are expecting the plant dynamics and/or circuits to provide
low pass behavior. Still, one might wonder why use of a low-
pass derivative filter is not a standard practice. This author’s
best guess is that the most common implementation of a PID
controller is a backward rule discrete equivalent approxima-
tion. As we will see in Section VI-A, this equivalent puts
in its own low pass filter on the differentiator. The typical
over-conservatism of the backwards rule equivalent saves the
casual designer the trouble and will tend to behave well,
especially at low frequencies.

Understanding these four basic forms are useful to a user
that has purchased a system that includes a PID controller
e.g., the controller of a motion control system. Invariably,
the user trying to model these systems will find that one
of these forms has been used without it being documented
in the product literature. Likewise, technical papers on PID
controllers will often default to one of these forms without
any discussion about the particular choice Because of this, it
is pretty common to see PID gain ranges that vary all over
the place, even for the same basic controller. These 4 forms
are summarized in Table I.

It should be obvious that we can put these separate terms
into one transfer function. What may not be obvious is how
this will look once it is combined. Sections IV —VI discuss
this.

Equations (6)—(9) can all be related to second order
sections and these can be used for loop shaping. We will
focus on (6) and (8) since setting 17 = Tp = 1 gets
these to (7) and (9). Thus, by setting the parameters of the

Time Dom. | Freq. Dom.
Form Equation Equation
Explicit Time, No Filtering (D) 6)
Implicit Time, No Filtering 2) [@)
Explicit Time, Deriv. Filtering 3) (8)
Implicit Time, Deriv. Filtering 4) )
TABLE I

A SUMMARY OF THE FOUR BASIC FORMS OF ANALOG PID CONTROL
WITH REFERENCES TO THEIR ASSOCIATED TIME DOMAIN AND
FREQUENCY DOMAIN EQUATIONS.

PID, we can set the parameters of the notch. Note that the
parameterization will change quite a bit depending upon if
we use (6) or (8), and this is because the filter in (8) is acting
only on the differentiator.

ITII. PID REGIONS
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Fig. 1. The regions of PID control for a second order, resonant plant.
In many practical uses, one can consider a PID controller
to be operating on a second order or lower plant, such as
the one diagrammed in Figure 1. In many cases, the control
action is taken and removed well below the resonance, and
in this case the proportional plus integral (PI) part of the
controller is used, to make the open loop response look like
an integrator near gain crossover, and then remove the phase
effects before the —180° effect of the resonance. In these
cases, the derivative term is seldom used. Similarly, when the
resonance is well below the crossover region, the system can
be controlled as if it were a double integrator, and in this case
the proportional plus derivative (PD) action is used. In these
cases, there may still be a motivation to use integral action
at low frequency and thus a PID with derivative filtering
resembles separate lead and lag controllers. In neither case
is precise knowledge of the resonance needed. It is only when
the crossover region is relatively close to the resonance that
more complex methods, such as those described in [9], [15],
[16] become important. The formulas that follow concentrate
on the latter, more complex case, while emphasizing the
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effects of digital implementation as described in [9]. In the
case of first order time delay models, such as those found
in process control applications [8], full PID control is used,
where the PI portion provides low frequency gain and the
PD portion adds some lead to compensate for the phase
due to the delay, the the requirements of matching a high
Q resonance are not present.

IV. UNFILTERED ANALOG PID AND SECOND ORDER

SECTIONS
Starting with (6), let’s set Tp = 17 = T and put
everything over a common denominator:
KDT Kp S K]
C = 242 11
(S) S S+KDT+KDT2 ’ ( )
KpTs®+ Kps + &1
_ DI TAPST T (12)

S

While (11) allows us to solve for the numerator parame-
ters as a second order section, (12) is a standard numer-
ator/denominator form that we might use in Matlab. This
form of the PID is not proper, but this is typically mitigated
by the way PID controllers are implemented.

The numerator of (11) also has the form of a second order
section i.e.,

Ny = &

2 (5% + 2Cwps + w?), (13)

so we should be able to set

KDT 2 Kp S K[ K 2 2
= s K—Df -+ Ko T2 = ans [s + 2Cwy s +w”] .
14)

If we were simply to try to match N(s) in (13) then we
might choose to match the DC gain to some prespecified
value, K. However, the form that we want our PID to match
has infinite DC gain, so we need to pick a frequency and
gain that we wish to match and then evaluate the right side
of (14). If:

N K
iS) == (s° + 2Cwns + w?),

15)

then

N (jwo) K 9 5  WnWo
= —wi + 16
] Jwow? Wn =0T Q ’ (16)

JwWo n
where Q = i If we pick our desired gain, K, at a certain
frequency, wg = 27 fy, then we get

N(jwo) K WnWo 2
Ky = = 2 w22 .
L e e e A
(17)
This can be solved for K via
K, 2
K= 040%n (18)

Using (18) to pick K allows us to equate terms in (14)
allows us to solve for wy,, ¢, and Q:

1 [K; Kp
w = DL e P and (19
w Ny ¢ wmry 4 1
1 VKK
Q = VAIBD (20)

20 Kp
However, for design, we might want to specify w,, and ¢ or
@ and then re-derive the PID gains as a function of those
parameters. This should give us a better way of picking
Kp, K7, and Kp, if we know which center frequency and
damping we want the controller numerator to achieve.
Let’s set w,,. We also know T', which is our integration
and differentiation time, but will also be our sample time.
Finally, we set @ (which is equivalent to setting (). From
(14) we have
B _ (wnT)? and Kp _wnd
Kp Kp Q
If we now let Kp be our overall controller gain, scaling
Kp means scaling Kp and K; in the same proportions to
maintain the desired shape of the compensator. In summary
pick K from (18) to set the controller gain. Then

K K
= —, K;=KT, and Kp = .
Tw?’ I and A p Qe

An example of generating PID gains from notch filter
parameters is shown in Section VII. An example using a PID
to form a notch filter for loop shaping of an AFM control
loop is shown in [9].

= 2w, T. 1)

Kp (22)

V. FILTERED DIFFERENTIATOR PID AND SECOND
ORDER SECTIONS

Let’s set Tp = 17 = T in (8), put everything over a
common denominator, and then relate it to the second order
section from (13):

Ci(s)
= (Kp+ Kp)
2 Kpa1+K Kraq
y 7+ (Ki+KD)IT5 + (Kp+II(D)T2 23)
s(s+ %)
2 2
_ 52 s“ + QCwnf—Fwn ’ 4)
wy s(s+ %)

Since the PID has infinite DC gain, we need to pick a
frequency and gain that we wish to match.

N(S)_K<32+2Cwns+wi)

= 25
5+LT1 25)

2
S Swy,

then

N(jwo) K w2 —wd + %50 26)
jwo  jwow? Jwo + ’
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where () = 5=. If we pick our desired gain, K, at a certain
frequency, wo = 27 fy, then we get

oy ()’

- wown <%>2

N(jwo

Jwo

Ko = . Q7

This can be solved for K via

K= = (28)

Using (28) to pick K allows us to equate terms in (14)
allows us to solve for wy,, ¢, and Q:

/ Kra
\/b1b2_ Kpi]l(p
T =
1(b1+b2)_1 Kpa, + K
2 Vb1b2 2\/(KP+KD)K[(J,1.

From the damping factor, (, we can compute the quality
factor, Q = of the anti-resonance:

(29)

(30)

2(’
Q \/b1b2 _ \/(KP+KD)KIG1 (31)
b1 + ba Kpa, + K

We can use (29), (30), and (31) to back out PID gains based
on w, and ¢ or Q. First from (23) and (29) we see that our
overall controller gain K is given by

Kray
— =K Kp = 32
> p+ Kp (wnT)? (32)
From (24)
K K + K
S =Kpt+Kkp=-L"T7g (33)
e wyT

Now, we can pick the frequency, w,, at which to match
gains. 1" will be our integration, differentiation, and eventual
sample time, so we will know that. Finally we can pick ¢
or Q. If we want to vary K = Kp + Kp then (32) tells
us that we need to scale Kja; by the same amount to keep
a constant w,,. Likewise, (33) tells us that we need to scale
Kpay + K7 in a similar fashion to keep () constant.

One possibility for doing this is to pick a; from physical
limitations of the analog hardware, noise issues, or our
desired denominator for (23). With a; fixed, (32) sets K
and (33) sets Kp and therefore K. However, this is basing
things solely on the desire to set the numerator of the
controller. We will see in Sections VI-A and VI-B that our
discretization method also limits the choice of a;.

In summary, pick a;. Then let:

K
Kp+Kp=—

5 Then (34)
KT? KT? 1 1

K]: ande: - . (35)
ai ai anT ai

VI. DISCRETE PID

An ideal PID without differentiator filtering (from (6))
can be discretized using a backward rectangular rule but
not the trapezoidal rule. The usually conservative backward
rule equivalent allows the use of an unfiltered derivative PID
design, since the continuous derivative maps to a zero at
z =1 and a pole at z = 0. We can’t apply the trapezoidal
rule to the unfiltered differentiator of (6), because the z + 1
term in the denominator results in a pole at z = —1, which
will be an internal oscillatory pole in the compensator. So,
while the closed-loop system might be stable, we wouldn’t
have internal stability.

The filtered differentiator of (8) can be implemented using
either backward rectangular or trapezoidal rule as will be
shown later.

A. Backward Rectangular Discrete PID
Applying the backward rectangular rule to (6) yields

C(Z)KP+1}I({;1:21)+KDTD,2217 (36)
and setting T'=T; = Tp we get
C(z) = Kp + K - z . (37)
In terms of 2! this is
C(z) = KP+K1 — + Kp(1—27"). (38)

Note that (37) and (38) have discrete PID gains that are
trivially related to the analog PID gains through the sample
period, T'. Equation (38) is useful for generating the time
domain difference equation in 3 separate units, proportional,
integral, and derivative. It is the equation from which we
would program this controller, as it would make it easy to
add an anti-windup piece to just the integral portion despite
being harder to analyze in the z domain. We can rewrite
(37), though, as:

Kp(z—1)(2) + K22+ Kp(z — 1)?

2
C(z) = bozzﬂ7 where (40)
22—z
bp = Kp+ K;+ Kp, 41)
by = 2Kp+ Kp, and by = Kp. 42)

Using (40), we can examine the discrete-time properties of
the linear model of this PID in Matlab.

Applying the backward rectangular rule to (8) (with the
filtered differentiator) yields

TZ TDZ—l
C(z)=Kp+K K L= 43
(2) = Kp TG0 " PTpat o 43)
Again, setting T'=T7 =Tp we get
U(z) z z—1
C(z) = =Kp+K K 44
(@) =) = Krt K g+ Ko q 5= 49
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or equivalently

z (2 — 1)
C(z)=Kp+ K; + Kp L T , 45)
z—1 Z— T3
or in terms of z 7!
1 1
1 T (1—27)
C(z"YY=Kp+K; — + Kp - . (46)
1—=z e -1

Equation (46) is useful for generating the time domain
difference equation in 3 separate units. For linear analysis,
if we set 1

- 1+ a9
we can combine the elements of (45) as:

o 47)

C(z) = Kp+K; : +KDM, (48)
b022—g1;j-b2 .

C(z) = Z-—(ta)zta) where (49)

bo = Kp+ Kr+ Kpa (50)

b1 = Kp(l—‘rOé)—FK]Oé—FQKDOz (51)

bo = Kp+ Kpa (52)

Equation (49) is the one that we can use for linear analysis
in the z domain. The controller will have stable roots for
all a; > 0, so we have changed the character of the discrete
differential term. Without the filtering, it had a pole at z = 0.
With the filter, the pole is at z = 5 +1u1 which moves from
being close to z = 1 with a; small to close to z = 0 with
a; very large.

B. Trapezoidal Discrete PID

Applying the trapezoidal rule to (8) works as well because
the filtering of the differentiator removes the possibility of a
ringing pole in the compensator:

C) = Kpt KT 2Pt gy TPTET g
R VST R = A
Setting T'=T7 = Tp we get
Krz+1 22
C(z)=Kp+ =L +Kp—>at (54
(2) Pt D2Zi+a1 54

This reduces to

Krz+1 2 z—1
Cz)=K — K . (55
=Kty D<2+a1)z—3131 ©Y

which has a stable differentiator for all a; > 0. In terms of

2z~ this is:
2 1—2z71
K .
b (2+a1> 1-— 2_a12_1

24aq

K[1—|—Z_1
——+
2 1—z1

Equation (56) can be used to implement the PID in the
time domain. However, it is more common to implement
each of the sections independently and vary the gains as if
it were an analog controller. For analysis purposes, if we set

B= o
+a

d v= (57)

2—|—a1

then (55) can be reduced to a single fraction to allow one to
evaluate the lag-lead behavior of the PID in the z domain.

Krz+1 z—1
— +

C(z) = Kp+ 5 o1 KDﬁZ—’}/’ (58)
2

Cz) = Z;)Oj (;—ilj)j—%v where (59)

by = Kp+ % + Kpp, (60)

by = Kp(l+7)+ %(7 — 1)+ 2Kpf, and(61)

by = Kpvy-— &’Y + Kpp.. (62)

2

Equation (59) is the one we would use for linear analysis
of the controller. The poles of (59) are easy to determine
at z = 1 and z = ~, but the zeros of this controller are
much more complicated, as seen from (60) — (62). The use
of the trapezoidal rule and the derivative filtering makes the
relationship of the physical gains to the discrete equation gets
more convoluted than with the backward rule equivalent that
has no derivative filtering, as seen in (39)—(42).

VII. DESIGN EXAMPLE

Analog vs. Backwards Rule Digital PID Control Designs
T T T

40 E
30F - o e
— KO = 10.000
8 20f o .
=4 f =0.2kHz
© (]
= 10f o E
Notch Q = 10.000
ok o - J
f =1.0kHz :
o
_1of " L . J
10" 10° 10° 10* 10°
Freq (Hz)
T=5uS
100 T T
Analog No Filter
Analog with Derivative Filter|
50 Backwards Rule No Filter |+
=
g
s
s 0
2
&
o
_sof .. J
-100 1 2 : 3 4 5
10 10 10 10 10
Freq (Hz)
Fig. 2. Continuous and discrete PID controller response derived from

notch filter model. The backwards rule version is based on the unfiltered
continuous design.

This section shows how the methods in this paper can be
applied to a particular loop design. The parameters of the
notch filter model are f, = 1 kHz and Q = i = 10.
The parameters Ky = 10 at fy = 200 Hz, mean that the
parameters are adjusted so that the filter has a gain of 10 at
200 Hz. The integration time, 77, differentiation time, Tp,
and eventual sampling time 7s are all set equal to 7" = 5uS.
In the case of design based upon a filtered differentiator, the
corner frequency is chosen to be at 50 kHz.

We can see from Figure 2 that the net effect of the
backwards rule is to place a low pass filter on the differ-
entiator portion. (The pole at z = (0.) The main issue is
that we do not have design freedom with choice of this
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Filtered PID Control Designs

40 4
30f 4
— KO = 10.000
8 20f g
=S f =02kHz
& 0
= 1o0f 4
Notch Q = 10.000
ok J
f =1.0kHz
n
—10f FE . o 4
10" 10° 10° 10* 10°
Freq (Hz)
T=5uS
100 T T T
Continuous
Backwards Rect.
50H Trapezoidal
> Prewarped Trap.
s
s Of
2
&
o
_sob
_100 N 1 1
10' 10° 10° 10* 10°
Freq (Hz)
Fig. 3.  PID controller response derived from notch filter model. This

version has a low pass filter on the derivative. Note that the prewarped
trapezoidal and the trapezoidal rule are virtually identical, as the prewarp
frequency is at 1 kHz, far below the 200 kHz sample frequency.

filter, but for many the simplicity of a simple translation
between analog PID parameters and digital PID parameters
is worth this. The comparison in Figure 3 shows that with
the trapezoidal rule equivalent of a filtered analog design, we
can minimize the phase penalty. This is most useful when
dynamics at higher frequency require equalization, such as
with a multinotch [11] and we do not want to be limited by
our PID implementation.

VIII. CONCLUSIONS

This paper presented a unified framework for analog
and digital PID controllers based on a set of second or-
der relationship and some assumptions about filtering. The
uniform treatment allows a designer to read different PID
specifications in the literature and easily relate them in a
common way. These relationships also allow

o better design of continuous time PID controllers by
extracting the gains from standard controller forms,

o better implementation of discrete PID controllers
through a better understanding of their relationships to
the continuous forms, and

« simplified linear analysis of PID controllers.

These relationships seem absent from the standard dis-
cussions of PID controllers [6], [7], [12], [13]. However, by
using these relationships, the design of PID controllers can be
done using the standard filter design methods most common
in control engineering.

Furthermore, the framework leads one to understanding
why so many practical PID implementations are in the forms
of Equations 37 or 38, since the gains translate trivially from
analog to digital and the typical excessive conservativeness of
the backwards rectangular rule allows less careful designers
to ignore any filtering issues. A more complete discussion
of filtering was avoided due to length issues for the paper,
but it is clear that one can use higher order filtering on the
derivative section or on the entire PID [12].

The formulas for translation between different forms are
especially useful in creating design scripts in Matlab or
Octave, as was applied to AFM controller design in [9].
In this paper, an AFM actuator is measured and fit to a
second order model which is then controlled using a PID
with gains picked so as to notch out the main resonant
behavior. Moreover, the understanding here can be viewed
as part of a larger context for mechatronic control system
design [17], in which the PID design is coupled with filter
design [11], [18] and frequency response measurements [19],
[17].
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