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Abstract— This paper is about the difficulty of making
well known and widely accepted advanced textbook control
techniques work in an industrial environment, particularly with
mechatronic systems that have large numbers of flexible modes.
I will go through the methods that fail if done the standard
way and the adjustments I have learned to make over the
years which get a lot of them to work. I will also go over the
methods that seem to work robustly and without much thought
in the industrial environment, explaining why they do work.
Finally, I will try to show that understanding the differences
and commonalities in these two world views allows us to use
the principles of one to improve the other.

I. INTRODUCTION AND OVERVIEW

This paper will present a personal and technical odyssey
that I made from graduate school to today, with the un-
derlying theme of trying to get advanced control to work
on mechatronic systems. The journey is far from finished, I
hope, but I am far enough along to share some insight that
might help others. Although this has been a personal journey
and I will use a lot of first person to relay a sense of time in
the presentation, the discussion is based on techniques and
methodologies, as well as those “simple tricks and nonsense”
[1] that seem to work when applied with the mindset of
advanced control.

A mechatronic system is defined as one in which mechan-
ics and electronics are tightly coupled. Generally, the mecha-
tronic systems that present difficulties are ones that have res-
onances and anti-resonances with low damping factors (i.e.,
high Q). I will simply call these high-Q systems. This paper
will consider small-scale mechatronic systems that need to be
manufactured in large numbers, such as disk drives, optical
disks, scanning probe microscopes, inexpensive robotics,
scientific and electronic instruments, consumer products, and
the like. This scale of system cannot be individually tuned
in the way that a group of engineers might tune the control
system for a multi-million dollar fighter aircraft, nuclear
reactor, or cargo ship. The controllers either have to calibrate
themselves or be robust enough to operate without repeated
calibration.

There will be some basic themes/thoughts/ideas that
emerge. In graduate school we moved quickly from classical
control to state space, where the real theory was being
done. System identification was done in the time domain,
which usually meant doing identification on discrete-time
models. We will see how that becomes exceedingly difficult
on systems with high Q resonances.
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This leads to the second theme, which is that state space
is model-based control, and in order to do model-based
control, one must have a good model. This seems absurdly
obvious, but it turns out that the difficulties in getting a good
model for high-Q systems severely limit the applicability
of state space methods. Time-domain system identification
has difficulties, and most frequency-domain methods focus
on using measurements made with Fast Fourier Transforms
(FFTs). However, FFT based frequency-domain measure-
ments – having been extracted from time-domain data –
manifest a dual problem to that of the time-domain measure-
ments when trying to resolve the sharp frequency-domain
features of high Q dynamics. (In this discussion FFT will
refer to methods that use broadband input to generate a
block of sampled time-domain data which is subsequently
transformed using an FFT or related – e.g., periodogram,
Power Spectral Density (PSD), etc. – method.) Even the most
accurate frequency-domain measurement method, stepped-
sine or sine-dwell (known in industry as swept-sine [2]) only
produces a frequency response function (FRF) which must
be fit to poles, zeros, and gain to get to a parametric model
and this turns out to be a tremendous challenge. Progress on
this series of problems has required a lot of interdependent
pieces of technology.

Before those problems could be solved, I had to come
to terms with the third theme, that is that many, many
practical control problems are solved quite simply with
very little deep consideration of unmodeled dynamics. From
the ubiquitous use of Proportional-Integral-Derivative (PID)
controllers in industry, to the circuit designers of phase-
locked loops (PLLs), to the proponents and users of fuzzy
logic and fuzzy control, to the explosion of simple “control”
applications on the Raspberry Pi and its cousins, there are a
lot of control systems that work without a lot of analysis.

The fourth theme is that if you have done everything
else right, then you get to do the advanced methods and
see them work. There are times that the physical problem
practically begs for a multirate or an adaptive solution, but an
adaptive-multirate version of a control design that produces
poor results at its tuned state is still a lousy controller.

The fifth theme was best stated by Olivia Newton-John,
when she told the world, “Let’s get physical.” Real control
systems are far easier to understand and debug when the
signals and states are close to the physical model of the
system. In order to preserve the physicality of our models
through discretization, we need to understand that many of
the seemingly simple industrial control applications using a
PID or lead-lag and some filters preserve essential physical

2015 IEEE Conference on Control Applications (CCA)
Part of 2015 IEEE Multi-Conference on Systems and Control
September 21-23, 2015. Sydney, Australia

978-1-4799-7786-4/15/$31.00 ©2015 IEEE 223



intuition. To apply our advanced methods, we must learn to
mimic this “preservation of physicality.”

The sixth theme, which couples to the fifth, is that we
should not remove ourselves too far from the implementation
details. ADCs, DACs, choices of processor, analog circuits,
actuators and sensors, floating point versus fixed point calcu-
lations, all matter. The control designer who gets too far away
from these puts large chunks of their design in the hands
of someone who likely lacks a system theory perspective.
In other words, it is useful to know how to implement
controllers beyond the Matlab or Simulink simulation.

The seventh theme is more of an axiom, and that is
that advanced methods should gracefully degrade to simple
methods if the problem is made trivial enough. In fact, I
would argue that this is a fundamental sanity check for
any advanced methodology: if one simplifies the problem
enough, does one see one of the basic methods that works
so robustly? If not, the advanced solution is almost certainly
wrong, or at least not optimizing the correct model. If it is
true in general, then it should work in a simple example.

The eighth theme/principle/observation is that people like
to have knobs to turn, as long as there are not too many of
them. As much as anything else, this can explain the contin-
ued popularity of PID controllers, fuzzy logic, and Gaussian
filters. All of these present the user with a relatively small set
of digital “knobs” to turn, which give the impression (real or
imagined) that the user is using some sort of know-how to
optimize the behavior of the system in a way that they can
see on an oscilloscope.

The ninth theme/principle/observation is that when mea-
surements are tedious to make and record, people avoid them,
or try to find some shortcut way of doing them. In either
case, this results in models that are far too distant from
physical reality. I will argue then, that doing the grunt work
of connecting measurements to models in a way that makes
it trivial to iterate, is one of the key missing ingredients in
mechatronics research. The dual of this is the connection of
the design tool to the real-time controller implementation. It
should take only a few keystrokes, mouse clicks, or screen
touches to implement a new controller parameterization in
highly efficient, low latency real-time firmware that preserves
most of the hardware platform’s raw speed.

Perhaps one more theme can be expressed in the mantra
I have been using for a few years now,

Optimality sucks.1.

Let me explain: Optimality, as we think of it, is based on a
cost criterion applied to a limited model of the system. This
limited model is by definition always flawed when describing
the real world. The net effect of pushing for optimality then
is often to cause the design to fail when applied to anything
real. On the other hand, knowing optimal conditions for
a model, and knowing how closely that model describes
reality allows us to get excellent control. This is why on
real physical systems, optimality conditions are, as Captain
Barbossa would say, “more of what you’d call ‘guidelines’

1 c©that.

than actual rules.”[3] Thus, the above mantra, Version 2.0,
would read

Optimality sucks – but excellence rocks2.

Still, as Bill and Ted might say [4], “Being excellent is not
bad.”

II. WHAT DIFFERENT PERSPECTIVES WANT

I am going to jump ahead here and offer a view of
what two different control perspectives are looking for and
then I will try to back that up in the sections that follow.
This will be somewhat akin to a two-pass compiler, first
reserving variable references, and then coming back to tie
them into reality. At least, that is the intent. The reader should
understand that in order to present these two perspectives I
will make very broad generalizations that won’t apply to
any one individual exactly. Call it fuzzy reasoning. The two
perspectives I will consider here are textbook and practical
mechatronic control.

Broadly stated, textbook mechatronic control wants to:

• Take a system model that describes something in the
real world.

• Find properties of that model that allow for a new and
improved method of control.

• Analyze the new method on the model and show it is
“optimal” on some metric.

• Simulate the model in Matlab/Simulink (or something
equivalent) and make it “real” by adding in Additive
White Gaussian Noise (AWGN) and/or some sort of
bounded uncertainty.

• Say it will work in practice.

Broadly stated, practical mechatronic control wants to:

• Hook some real-time controller box into a test system
or prototype.

• Push a button that generates excellent measurements of
the system and produce model options.

• Push another button that generates an accurate, robust,
parametric model for controller design, and gives the
user a design choices menu.

• Push the design button that produces a high perfor-
mance, robust control design and projects its behavior
against the original measurement.

• Push one more button to transfer the design into a low
overhead, high sample rate, real-time control system.

This is where I want them to meet:

• Every button push results in a step that is both physi-
cally intuitive and mathematically smart (although not
necessarily “optimal”).

• Models are heavily measurement driven and measure-
ments can be rapidly iterated with data being passed
easily to and from control systems Computer Aided
Design (CAD) software. Parametric models for control
design can be rapidly and reliably extracted from mea-
surements.

2 c©that, too.
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• Implementation choices and trade-offs are reflected
back into the system and design model.

• Measurement, model, and design improvements are
easily iterated on the experimental system. Designs are
easily transferred to the real-time experimental system.
Experimental and measurement data are easily trans-
ferred back into the CAD program.

• Experiment and design results easily compared to “op-
timal” model-based projections to see how close imple-
mentation is to theoretical best.

• The ability to reflect “non-control” design choices into
the model in an intuitive way for co-design with other
fields.

• Experiments, models, and designs easily saved in a form
that is easy to retrieve, easy to display, and easy to
export to many other formats.

The unified approach does not see superiority in either
theoretical or practical results, but works to iterate between
the two to achieve a practical system that may not be optimal
but is excellent. Much of the work to connect these two
worlds involves a lot of grunt work in programming, but
this programming cannot be done without a system view
that stretches from the physics to the web page. Not only
that, but the programming has to take the structure of the
physical system.

III. FRESH OUT OF GRAD SCHOOL (FOOGS)
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Fig. 1. Optical disks control problem. When actuator is rotary, tracking
pattern rotates in the optical detector causing cross talk between channels.
There is also mechanical cross coupling in the mechanism.

After graduate school, and after a brief stint at Ford
Aerospace in which Dan Witmer introduced me to phase-
locked loops [5], [6] (Section VI), I joined Hewlett-Packard
Laboratories (HP Labs or HPL). The job at HPL was to
work on an optical drive (Figure 1) as a replacement for
magnetic disk drives (hard disks), which at the time were
using the 5 1/4” format, spinning at 3600 RPM, and holding
between 100 MB and 500 MB in a full height drive. The
areal density of optical drives at that point was much higher,
largely owing to the square aspect ratio of the bits, whereas
the magnetic bits had a roughly 20 to 1 ratio of the cross
track dimension to the down the track dimension. The issues
involved in rewritability (achieved by using magneto-optic
recording) and the shrinkage of the relatively large optical
access mechanism, and one of the mechanical aspects of this
was to move to a rotary actuator as disk drives had [7], [8].

This increased the cross coupling between focus and tracking
loops [9], [10].

While my graduate school work was filled with trying to
come up with some new theory or algorithm, at HPL I was
faced with a situation of needing to do research on MIMO
control systems, for which only a laboratory demonstration
would do. However, when I started at HPL, the laboratory
system for doing control experiments consisted of a system
based on a TI TMS-320C25 fixed point DSP chip. The rou-
tines were written in assembly language and ran off of an old
HP 9836 technical desktop computer. The real-time software
on the DSP implemented a simple digital lead controller
with some extra filtering. Changing parameters on the system
required a reassembly of the assembly language code. The
host computer, while hosting its own set of tools, made it
impossible to connect the DSP system or any of the real-
time data to a CAD program such as Matlab. Furthermore,
even though there were large numbers of instruments in the
lab, including digital oscilloscopes, spectrum analyzers, and
dynamics analyzers, such as the HP 3562A Dynamic Signal
Analyzer (DSA), none of these were tied into any computer
systems. This meant that measurements were monolithic, not
tied into any of the design programs, and most likely to be
saved by printing them out on a pen plotter. Furthermore,
the difficultly of taking a measurement into something like
Matlab made it something that one would do rarely. To me,
this seemed like a tool set with no chance of producing
good results, largely because of the difficulty in sharing
data made rapid, measurement driven design iteration next
to impossible.

One positive feature of the system was that the DSA
was capable of unwrapping closed-loop frequency response
function measurements into open-loop quantities. That is, if
one measured the frequency response function (FRF)

T =
PC

1 + PC
, (1)

then with a push of a button it would compute

T

1− T
= PC. (2)

This was very helpful, so long as your system was SISO
and your measurement indeed was of T and not −T and
not P

1+PC or C
1+PC . In these cases, the fixed structure and

programming of the instrument became a real limitation.
At the time, there were several possible solutions. I could

pay about $50K–$100K for an RealSim AC-100 System
made by Integrated Systems, Incorporated during that era
[11]. I could wait 2–4 years for dSpace to come out with
their first floating point DSP based control tool. Instead, I
chose the option of working for 16 months to create my
own tool using a TMS-320C30 floating point DSP chip on a
Banshee DSP board produced by Atlanta Signal Processing
(ASPI) at the time. The system I created (Figure 2) [12] to
be able to test Multi-Input, Multi-Output (MIMO) controllers
for optical disks [10], [13] had the following characteristics:

• The DSP board resided in a standard MS-DOS PC, with
an Intel-80386 processor and an 80387 IEEE floating
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Fig. 2. The Banshee Multivariable Workstation did everything it was
supposed to do and not enough.
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point co-processor. It was the first full 32-bit computer
in the lab, and I used the 32-bit registers to translate
between the C30’s floating point format and the IEEE
floating point format on the PC. Using a standard PC
allowed me to run PC-Matlab on the lab system and
which meant that if I wrote the glue software (in
Borland’s Turbo-C) I could tie the real-time system into
my Matlab CAD tools.

• The system read multivariable servo parameters from
ASCII files written by Matlab in a predefined format,
called the .svo format. It would read the number of
inputs and outputs from the file and then the type of
controller and dynamically allocate memory, read in the
multivariable parameters, and dump these parameters to
the running DSP between sample instants (Figure 3).

• Hooks were in place for state-space, but the only DSP
structures that I had implemented were polynomial form
discrete-time filters for controllers.

• There were digital “knobs” to allow the gains and
offsets from any of the MIMO filters to be adjusted
in real-time. They could also all be switched on and off
individually.

• Any signal in the DSP code could be designated as one

to be tracked and with every sample instant, the contents
of that signal or parameter would be saved on the host
computer via dual port memory.

• With the initial work of Carl Taussig, it was interfaced
to the HP 3563A Control Systems Analyzer (CSA),
an augmented version of HP’s 3562A DSA, that was
capable of both analog and digital frequency response
function measurements and curve fits [14], [15], [16],
[17]. The CSA had a superset of the features of the
DSA, specifically enhanced to work with discrete-time
systems. Significantly, measurements could be coordi-
nated from the host computer and completed measure-
ments and/or parametric curve fits were uploaded to the
host computer to be used in Matlab.

I called the research system, the Banshee Multivariable
Workstation (BMW) [12], borrowing from a car advertise-
ment to refer to it as, “The Ultimate Servo Machine”, because
I was young, foolish, and arrogant.3 The BMW did some
things extremely well:

• It separated the problem into three levels of computa-
tional latency: hard real-time, near real-time, and non
real-time.
In hard real-time, computations have to be completed
between sample instances. Here, the number of clock
cycles for multiplications and additions are counted,
and division and trigonometric functions are avoided.
This is the playground of the efficient IIR filter and the
PID, where latency is most critical. Here, DSP chips and
FPGAs (Field Programmable Gate Arrays) are used for
high speed applications, while slower systems are the
realm of small micro-controller chips.
On the other end is non-real-time computation, which
is the land of the CAD tools (Matlab, Mathematica,
Maple, Python, Octave), in which designs are formu-
lated and measurement data is post processed. The
acceptable latency here is on human time scales. No
safety critical computations get done here, but designs
for the real-time block are created. This is the world of
computing that most people are acquainted with, where
problem solving is multiplexed in time with email, chat
boxes, and web sites.
In between is the middle ground of near real-time. This
level has to keep up with the hard real-time in an
average sense, but does not need to be completed on
every sample. On the other end, it needs to be able
to interact with the non-real-time level and translate
data back and forth for that level. It is characterized
by some block calculations and buffers between the
different levels. This area is typically inhabited by fast
processor chips running lightweight operating systems,
such as a stripped down version of Linux.

• The BMW translated between Matlab designs and the
low level implementation with a few keystrokes. Be-
cause the DSP chip was floating point, I could download
transfer function controllers, each in an IIR filter form

3No longer young.
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with the numerators and denominators expressed as
polynomials in z−1.

• It connected real-time measurements and frequency
response measurements to control design CAD tools,
in this case PC Matlab. In a time when most people
printed out their measurements from the screen on a
pen plotter, this tool provided seamless integration to
upload measurements into design software.

In fact, it did everything that I had promised my managers
it would do, yet it did not do nearly enough. I had overcome
some basic bottlenecks in applying advanced control design
to high speed real-time systems, and yet, for the mechatronic
system I was working with, this was wholly insufficient.
Issues with the BMW system included:

• The optical disk fine actuator had flexure resonances at
around 11 kHz. The 25 kHz sampling rate that was
the upper limit of the system barely allowed these
resonances to be seen, as they were so close to the
Nyquist frequency.

• The original ASPI ADC/DAC card had two ADCs
and two DACs. Each ADC fed into a register which
also fed a DAC, such that one would write the DAC
output to the register, and when the timer fired for
the ADC conversion, one would read the ADC value
from that same register. What this meant was that it
was impossible to operate a feedback loop without at
least a full sample of delay due to the ADC/DAC
structure. There was no way to implement a current
mode estimator [18] or minimal latency control until a
new ADC/DAC board was built for me by a co-worker,
Lennie Kiyama. Once Lennie’s new ADC/DAC board
was in place, I could clock data to the DACs without
waiting for the next ADC clock. This allowed me to
precalculate most of the filter computations and have
minimal latency control (Section XII).

• Connecting the digital CSA to the MIMO control loop
required a huge amount of work (much of it done by
Carl Taussig). Not only did digital logic pods need to
be connected onto the DSP board, but an entire bus
architecture and sequencing method had to be devised
to route the appropriate signals from the MIMO loop in
and out of the CSA.

• Extracting pole-zero-gain models from FRFs failed re-
peatedly. The HP 3563A allowed one to make fully
digital measurements, but then these measurements are
farther removed from physical dynamics. This made
the fit of discrete-time dynamics very susceptible to
imperfections in the FRF (Section XVI).

Some engineers in the product division were using fixed
point DSPs sampled at 50 kHz – twice as fast as the BMW.
Their designs were simple concatenations of multiple digital
lead circuits with a notch at 11 kHz, and they were able
to achieve better results on the individual SISO focus and
tracking loops than I had.

It took me years to understand the full swath of things that
had happened on this project. Yes, I had created a great step

forward for our lab system computation, and this would pay
off when I worked on accelerometer feedforward for hard
disk drives [19], [20], [21]. While all of the problems I solved
were present in most real-time control research systems, I
had to learn a lot more about how things worked in industrial
products and more importantly, what were the root causes of
success or failure.

IV. WHAT THE TEXTBOOKS TELL US

In 2008 I was giving a talk at Karl Åström’s advanced
control class at UCSB, describing all the things that af-
fect mechatronic control systems and using optical disks,
magnetic disks, and atomic force microscopes (AFMs) to
compare and contrast [9]. As I wound down the hour-long
talk, a student near the front was looking more and more
sour. When it was time for questions, his hand went up.
“So, you’re telling me all this state-space stuff we’ve been
learning all these years is useless?” Umm. Inside my head, a
voice is screaming, “Think, Danny! Think!” Slowly, I started
to say, “Well, state-space control is model-based control,
and model-based control depends on having a good model.”
Picking up steam, I continued, “Face it, most of the time,
the models you guys are working with have little to do with
reality.” In my desperation to not crush what turned out to
be a Ph.D. candidate about to graduate, I had summarized
the right answer: To apply model-based control in the real
world, we need to extract models from measurement data
of the physical system. However, for high Q mechatronic
systems, identifying the time-domain methods that perform
some cost minimization between sampled measurements and
discrete-time models [22], [23], [24] is hard because the
inputs driving the model do not focus signal energy in
a narrow enough range to identify high Q features. The
phenomena is easy to see when this data is passed through
an FFT to produce a frequency-domain representation. In
this case, frequency bins are often wider then the high Q
features, and the accuracy of the representation is very weak
when the signal level is low, such as at high frequency when
the physical system response rolls off. These are the most
common methods in the academic texts [25], [26], [27], [28],
[29]. Furthermore, lots of parameters are adjusted at once,
whether it is for system ID or adaptive control [24], [30],
[31], [32].

In the texts, there is a disconnect between methods that try
to solve the entire problem, taking on every energy storage
mechanism in the system (the states) and the tried and true
methods such as PID control. We are told that when we really
want to optimize system performance, we need to work in
state-space, but the above difficulties in generating accurate
models from measurement data are often glossed over.

Likewise, any digital control system depends upon the
real-time system that will host it, and yet there is only
cursory discussion of the topics of data conversion, fixed
point formats, and real-time programming.

Elegant theory is often done in continuous time. (Some
of it is in pure discrete time, but then the connection to the
physical world is often abandoned.) The examples are almost
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invariably low Q, or if there is a high Q resonance, there are
only a few and they are distinct.

Discretization, when used, has been handed to Matlab’s
c2d function, with little thought about the consequences.
While c2d has many options, the Zero-Order Hold (ZOH)
approximation [18], [33] is most often used. However, for
anything other than a double integrator, relating analog states
to the digital states, is next to impossible. Physical intuition
has been lost, but this is not given much weight.

In the sections that follow, I will try to show how this con-
trasts sharply with how most successful practicing engineers
I encountered did their work. I will go through a few of these
example methodologies, and then try to pull together some
common observations.

V. INDUSTRIAL MECHATRONIC CONTROL

Mechatronic
Plant

PID Filter

ADC

DAC�

-
r yu

Fig. 4. A practical digital control loop for a mechatronic system. The
digital controller is often implemented as a PID like controller in series
with filtering to lower the effect of high frequency resonances. Recall from
Section I that we are focusing on small mechatronic control systems – of
a size and cost that then cannot be adjusted by a human engineer for each
device.

One can argue that what are thought of as human built
control systems are increasingly digital. Those that are not
are either operating at frequencies that are too high for
computer control, are using some built in regulation mech-
anism in the device or process, or are small analog circuits
where the feedback loop aspect is almost taken for granted.
Anything that folks recognize as a feedback controller is
done digitally, probably with a digital PID and perhaps a
few notch filters. However, that digital PID is usually a three
term controller based on analog PID theory, with the effects
of discretization largely ignored. The last two decades have
also seen the rise of fuzzy logic controller implementations,
where discretization issues are largely handled heuristically.

Why are these systems digital? The simple answer is
that it is hard to reprogram a circuit. A more complete
answer is that it is hard to do much analysis, design, or
schedule any signal changes without some sort of computer
technology. Furthermore, conditional logic, the if-then-else
or case switching in combination with filtering and control
is much easier using digital logic and processors.

Digital controllers require some skill in real-time pro-
gramming, and yet, most people skilled in control theory
often have far less real-time programming skills. Real-time
programming involves picking ADCs and DACs. It involves
choosing processors with minimal latency for the job. It
involves deciding between fixed point and floating point op-
erations. These skills are not typically taught in engineering
schools (apart from “that one class in EE”) and program-
ming constrained by the evolution of physical responses is
certainly are not emphasized in computer science curricula.

There are many good real-time programmers in industry,
but like their analog circuit designer cousins, much of their
skills are informally obtained over time. As a rule, real-time
programmers do not have a lot of elegant theory to work
with. Many have come from a signal processing background
and have some knowledge of filtering and coding of filter
equations. Typically, they do not have a strong understanding
of latency. This is a major issue because it means that DSP
and FPGA architectures are largely oriented around signal
processing – where latency does not matter – as opposed to
feedback control – where latency does. I once commented
to a Xilinx support engineer that they had lots of design
examples and built in hardware constructs for FIR filters, but
none for IIR filters. His response was essentially, “Systems
with feedback are 5% of our business, so we can’t spend
much effort on it.”

In industrial control, it is always about latency, sensors and
actuators, circuits, filters, and programming. Furthermore,
far more value is placed in getting anything to work than
is placed on the mathematical elegance or optimality of
the solution. A 5% or even 20% improvement does not
warrant a whole new set of designs, unless there is significant
profit advantage in such a small percentage change. Many
managers trying to meet product schedules will push for
the minimal system that meets the marketing specifications,
while there are some that take the long view and push for
methods that enable a class of products. Finally, experi-
enced designers will break the system down into separate
components that can be designed and tested individually,
much as experienced programmers break long programs into
functions and subroutines.

We will torture this analogy more later in the paper
when we argue that, just as programs need to retain more
structure than a hodgepodge of subroutines and functions,
our control designs must retain some structure to allow them
to be debugged. Furthermore, just as good programs draw
their structure from the type of data on which they operate,
good control designs must draw their structure from the
physical systems to be controlled. For the remainder of this
discussion, we will consider the final implementation of any
controller to be in a digital circuit, unless otherwise noted.
There may be analog portions, e.g., op amp circuits and
filters, but the “main” controller will be digital. As such, how
we handle discretization is important. If we lose connection
with the physics of the system, we generally have a problem.

VI. PHASE-LOCKED LOOPS: SO MUCH FEEDBACK,
SUCH SIMPLE ANALYSIS

Early in my career, a fellow engineer at Ford Aerospace
named Dan Witmer walked into my cubicle and asked me
how I would do nonlinear analysis for a phase-locked loop.
“What’s a phase-locked loop?” Once he patiently explained
it to me, I blindly stated that I would simply use Lyapunov
redesign [6], [31]. While nonlinear analysis of phase-locked
loops was an interesting subject, it was not the main learning
point of these devices. I have claimed that PLLs are the most
ubiquitous feedback loops built by humans [34], showing
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Fig. 5. A simple analog PLL and its baseband model. On top is the basic
loop model, where a sinusoidal signal of known frequency but unknown
phase enters the system, and a voltage controlled oscillator locks to that
input (reference) signal. On the bottom is the simplified nonlinear model
of the baseband system, that is the one arrived at by looking at only how
the phases of the oscillatory signals, and not the signals themselves, behave.
One final approximation, of linearizing the sinusoidal phase detector, allows
the phase behavior to be analyzed as a simple analog feedback loop. The
VCO is the “plant” and it is modeled as a simple integrator.

up in all of our smart phones, digital watches, and every
other computational device we have, and yet the feedback
analysis done in textbooks is only of the simplest type
[35], [36], [37]. Discussions with PLL experts at several
companies also showed that while they knew intricacies of
the circuits and the envelope behavior of the phase detector,
they generally used only very simple linear feedback analysis
in their designs. They paid surprisingly little attention to the
stability of the PLL.

It took a while to understand that since most PLLs were
first or second order, and for most of these one could show
that even the most basic rules of filter design led to closed-
loop responses for the phase-space where the parameters
that made the linear model stable also made the nonlinear
model stable [6], [38]. (In this case phase space refers to the
modulation domain or the baseband or envelope behavior of
the PLL.) These loops were simple and stable, because the
“plant” to be controlled was always an integrator, as shown
in the lower drawing of Figure 5, and the loop filter was
either a gain or a first-order lag, which resulted in stable
closed-loop behavior of the system. The Lyapunov analysis
showed that in these cases the parameters that made the
second-order linear model stable also made the second-order
nonlinear model stable. For the circuit designers creating
PLLs, they knew from experience that even the simplest,
dumbest controller (a.k.a. loop filter) would produce a stable
response and so they gave it no mind. Higher order PLLs
failed this, and thus were harder to analyze [5].

If our open-loop system is adequately modeled by an
integrator, then feedback control of that open-loop system
becomes trivial (Section XII). It is easy to show that the first

and second-order analog PLLs are always stable, even with
the sinusoidal phase-detector nonlinearity [6]. Furthermore,
with the right discretization, even the classical discrete-time
PLL was stable [38]. What about harmonics? Didn’t the
designers need to throw in some filters to get rid of signal
at the carrier frequency and its harmonics? Why were these
not in the textbooks? The answer came from HP/Agilent
PLL expert, Rick Karlquist, who laughed and said (more or
less), “Well, no RF engineer worth their salt wouldn’t know
to put in those filters! It goes without saying. That’s why it
doesn’t have to be put in the textbooks.” In this moment I
realized that any PLL that was not second order was likely
to be beaten into a form that looked second order. All those
analog RF filters were there, but they were never considered
part of the analysis. A lot of work was done to make the
system look like an integrator, and then control was done
from there. What kind of control was done? Both kinds, lag
filter and PI control.4 The designers were left to work out the
more taxing PLL design problems of having a good phase
detector and an oscillator with minimal phase noise.

VII. “WE’LL JUST CALL YOU BRUCE,” OR WHY

INDUSTRIAL CONTROLLERS ARE PIDS

e u
�

KP

K T sD D

KI

T sI

Fig. 6. A simple analog PID model.

PID controllers are the standard of comparison for grad-
uate students, the metric against which their algorithms in-
variably show improvement. The are ubiquitous, to the point
that common language guides exist for individuals skilled
in real-time programming, but with no actual knowledge of
feedback or filter theory. Tim Wescott’s excellent article, PID
Without a Ph.D. [39], is a shining example of a practical
and useful guide that makes the programming of digital PID
controllers accessible without explaining the math behind the
work. If one peruses available books on or with chapters on
PID control [18], [40], [41], [42], [43], one finds that they are
either described in continuous time or they are described in
discrete time with little explanation about the discretization
choices. However, these texts show that the discretization is
almost always a backwards rule equivalent. This seems to be
ignored or accepted without comment. Why?

One reason might be that the analog PID of Figure 6,
which has the analog model of

C(s) = KP +
KI

TIs
+KDTDs (3)

4A tip of the hat to The Blues Brothers film.
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can, if we set TI = TD = T , where T is the sampling
period, be discretized with a backwards rectangular rule to
yield [44]

C(z) = KP +KI
1

1− z−1
+KD(1− z−1). (4)

This means that the analog and digital PID coefficients are
trivially related through the sample period. Equation 4 lends
itself to easy implementation in software, and can be easily
modified to add integrator anti-windup.

10
1

10
2

10
3

10
4

10
5

10
6

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40
Resonant Second-Order Responses

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

Spring Line:
Crossover Here
for PI Control

Mass Line:
Crossover Here
for PD Control

Varying
Resonance

Fig. 7. The regions of PID control for a second-order, resonant plant.
Below the resonance, where the magnitude is flat and the phase is near 0◦
is called the spring line. This references behavior in that frequency zone
being dominated by the spring force. Above the resonance, the region which
is asymptotic to a magnitude slope of -2 or -40 dB/decade (as with a double
integrator) is often called the mass line.

Another aspect of PID controllers that isn’t often discussed
is the region of operation, relative to something like a second-
order mechatronic plant, such as the one diagrammed in
Figure 7. In many cases, the control action is taken and
removed well below the resonance, and in this case the
proportional plus integral (PI) part of the controller is used,
to make the open-loop response look like an integrator near
gain crossover, and then remove the phase effects before the
−180◦ effect of the resonance. In these cases, the derivative
term is seldom used. Similarly, when the resonance is well
below the crossover region, the system can be controlled as if
it were a double integrator, and in this case the proportional
plus derivative (PD) action is used. In these cases, there may
still be a motivation to use integral action at low frequency
and thus a PID with derivative filtering resembles separate
lead and lag controllers. In neither case is precise knowledge
of the resonance needed. It is only when the crossover
region is relatively close to the resonance that more complex
methods must be used, such as those described in [45], [46],
[47] become important. The formulas that follow concentrate
on the latter, more complex case, while emphasizing the
effects of digital implementation as described in [44], [45].
In the case of first-order time delay models, such as those
found in process control applications [48], full PID control
is used, where the PI portion provides low-frequency gain
and the PD portion adds some lead to compensate for the
phase due to the delay, the requirements of matching a high
Q resonance are not present.

All of this smacks of the robustness to imprecision that
Lotfi Zadeh often spoke about when describing problems
well suited to being solved with fuzzy control [49].

VIII. CAN I TALK TO YOU ABOUT . . . FILTERS?
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Fig. 8. Direct Form II configuration of an nth order polynomial filter [50].

Just as the RF engineers do with PLLs, many scientists
and engineers add independent filters to the signal path of
their system. For an analog circuit designer, these filters are
typically first or second-order op amp circuits dropped into
the signal path to “clean things up”. While the designer will
note how the filter improves the signals they see on the scope,
few tie any phase effects into things they might see in the
overall loop response. When filtering is done on the digital
side, it can range anywhere from an average of the last N
samples to a cascade of M first-order digital filters to an nth

order discrete filter based on an analog Butterworth filter
prototype [50], [51]. Depending upon the point in the signal
path, the phase effects of these filters may or may not be
significant, but it is often the case that this is not considered
from an overall system view.

FIR filters are rarely used to shape loop dynamics, because
the number of delays (taps) needed to produce the same
response as an IIR filter is much larger, and this impacts
latency. That being said, programmers and scientists often
make the mistake of adding in functions that average the last
N ADC samples or stringing together M first-order low-pass
filters (which they easily understand), rather than generating
a more effective Lth order filter, where L < M .

The advent of high speed floating point on DSP chips has
made it possible to implement high-order polynomial filters
of the form shown in Figure 8 in real-time. This allowed
the BMW system of Section III to take controller designs
from Matlab and implement them with little modification
in real-time DSP on the TMS-320C30. The controllers are
implemented as IIR filters of the form in Figure 8, which are
written as transfer functions in the z transform operator, z:

Y (z)

U(z)
=

b0z
n + b1z

n−1 + b2z
n−2 + . . .+ bn

zn + a1zn−1 + a2zn−2 + . . .+ an
(5)

or equivalently in the unit delay operator, z−1, which lends
itself readily to real-time implementation in assembly [52]
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Fig. 9. Input and output timing in a digital control system. The top
drawing is without precalculation; the bottom drawing is with. Note that
precalculation can be started as soon as the output has been sent to the DAC
and therefore is in parallel with the DAC conversion time. The computation
time, TCOMP , of the top diagram is now split into TPRECALC + TFC

where TPRECALC is the computation time needed for the precalculation
and TFC is the time needed for the final calculation after the input sample.
Modulo some small programming overhead, the split time should equal the
total computation time. Here TSH , TADC , and TDAC represent the sample
and hold, ADC conversion, and DAC conversion times, respectively.

or a high-level language:

Y (z−1)

U(z−1)
=

b0 + b1z
−1 + b2z

−2 + . . .+ bnz
−n

1 + a1z−1 + a2z−2 + . . .+ anz−n
(6)

The transfer function in (6) has an advantage in that the
coefficient of the current output term, y(k), is 1, so the filter
implementation is:

y(k) = −a1y(k − 1)− a2y(k − 2)− . . .− any(k − n)

+b0u(k) + b1u(k − 1) + . . .+ bnu(k − n). (7)

This form allows the designer to minimize the computa-
tional latency diagrammed in Figure 9 by rewriting (7), since
y(k) depends mostly on previous inputs and outputs. The
only current value needed is u(k) and this is only multiplied
by b0. So we can break this up into [18]:

y(k) = b0u(k) + prec(k), where (8)

prec(k) = −a1y(k − 1)− . . .− any(k − n)

+b1u(k − 1) + . . .+ bnu(k − n), (9)

and prec(k) depends only on previous values of y(k) and
u(k). This means that prec(k) can be computed for step
k immediately after the filter has produced the output for
time index k− 1 [42]. When the input at time step k, u(k),
comes into the filter, it needs merely be multiplied by b0 and
added to prec(k) to produce the filter output. Thus, the delay
between the input of u(k) and the output of y(k) is small
and independent of the filter length.

Although this form of controller easily admits the use of
precalculation, there are two large drawbacks. The first is
that the higher the order of the digital filter, the harder it is
to relate any of the digital coefficients to anything physical.
Second-order digital polynomial filters still can maintain
some ties to a second-order analog transfer function, but
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Fig. 10. A high-order filter structured as a serial chain of biquad filters.

beyond that it gets much harder. The second issue is that the
elements that generate discrete filter coefficients can become
extremely sensitive, particularly when they relate to high Q
elements near the unit circle. As these get multiplied together
to form the polynomial coefficients, not only is physical
intuition completely lost, but the coefficients become even
more susceptible. This is particularly true with fixed point
arithmetic used in many DSP and FPGA implementations.
This is why it is common practice to implement higher-order
digital filters (6) for high-Q systems using a series of second-
order filters, known as biquads, as diagrammed in Figure 10.

In Figure 10 the ith biquad would have equations:

Yi(z)

Ui(z)
= Ni(z) =

bi,0 + bi,1z
−1 + bi,2z

−2

1 + ai,1z−1 + ai,2z−2
(10)

which gets implemented in the time domain as:

yi(k) = −ai,1yi(k − 1)− ai,2yi(k − 2) + bi,0ui(k)

+bi,1ui(k − 1) + bi,2ui(k − 2) (11)

It turns out that it is easier to implement this using the delay
format [52] which resembles a controller canonical form [53]
in control or a direct form II IIR filter [50], [54], [55]:

di(k) = −ai,1d0(k − 1)− ai,2di(k − 2) + ui(k) (12)

yi(k) = bi,0di(k) + bi,1di(k − 1) + bi,2di(k − 2) (13)

Biquads are nice because the growth in values can be limited
by the short nature of the filter. Thus, finite word length
problems are minimized as the sums from the numerator and
denominator can balance each other out for a well designed
filter [52].

The issue is maintaining the ability to do final calculations
in the form of (8) [52]. To my knowledge, this has not been
possible until the work I discuss in [56], [57]. I will present
an overview of that work in Section XV.

231



IX. IMPLEMENTATION DETAILS AREN’T SMALL

One of the difficulties in industrial control is the constant
tug-of-war between the elegant solution one would like to
conceive and the realities of trying to make something work
in a real product. It is why – even though the value of simula-
tion is appreciated – nothing convinces the product engineers
like seeing something in moving metal. The implementation
issues can be so prevalent as to completely remove engineers
from thinking about the original elegant theory that they
started with.

Even a SISO digital control system will have a convoluted
signal path which involves all the sensors, transducers,
amplifiers, and the plant itself. While our textbooks like to
consider much of this to be lumped into the plant, they are
subject to design. It is often the case that the control engineer
is the one person on the team with a system level view of the
signal path, but it is also often the case that engineers will
optimize their part of the problem without considering the
other aspects. The buzzword for actually considering more
than one area is co-design, but what it really means is that
one needs to take a step back and view the overall impact
that each piece of the system has on the overall response and
not limit themselves to one piece.

A classic example is anti-alias filtering, ordained in digital
control books [18], [42] as necessary to keep signals at
frequencies above the Nyquist rate from entering into the
digital loop. In practice, though, these filters never come
for free. A Butterworth filter [50], [51] may have a flat
magnitude response in the pass band, but has pretty severe
phase attenuation that can affect the achievable bandwidth
of the system. Signal paths from sensors into ADCs may
include lots of voltage changes and various filters to elim-
inate board level noise sources. Analog designers, working
without interaction with control engineers, will often severely
cut achievable bandwidth because they did not appreciate the
impact of their filter choices on the loop.

The amount of processing available for real-time imple-
mentation is limited by the cost of the product. It is a sad
but true fact that one cannot put a $200 FPGA into a $50
disk drive. At the same time, the decision is often between
a $6 FPGA which theoretically could implement a digital
controller using fixed point math at a 100 kHz sample rate,
and a $10 ARM processor, which is far easier to program
but cannot guarantee precise sampling at 10 kHz because of
interrupt timing, and cache misses in the memory. It depends
on the cost, power dissipation, and physical interface of the
circuitry and what the system requirements can support.

The choice of computational hardware and software has
a big effect on achievable bandwidth. Signal processing
applications are far more prevalent and generally far “safer”
than control applications. However, at the heart of many
of these signal processing applications is a feedback loop,
often treated as an afterthought. This is akin to those large
European clocks with all the automata that operated at
different times [58]. The automata were open loop, but their
operation depended upon the proper operation of the clock

escapement which implemented the timing feedback loop
[59], [60], [61].

Most digital hardware is built with signal processing in
mind, not feedback control. The result is a set of converters
with extra delay, signal processing chips that do not mini-
mize latency, algorithms that may be efficient from a total
computation point of view, but are not efficient minimizing
the time delay between the time of the current sample and
the controller’s output to that data. Often, the idea of control
filter precalculation, as discussed in Section VIII is lost.

The generation of usable models from measured data on
physical systems is one of the great disconnects. Many of
the published methods emphasize time domain and FFT
based measurements [22], [25] for extraction of parametric
models and yet these have little success with high-Q systems.
The relay based tuning is very popular for PID controllers
[40], but this method cannot be applied to systems with
multiple resonances. This is a major breaking point in the
modern methods as applied to high-Q mechatronic systems:
we cannot apply modern control without parametric models
and yet we are rarely able to extract high fidelity parametric
models from high-Q systems. In the end, we are left with
system models that are often described as “mostly double
integrator,” but this begs the question: if it is just a double
integrator, why do we need all that model-based control?
The answer is to reexamine our measurements and model
extraction methods, and these will be discussed later.

The signals from which one generates an error signal is
often buried in some high frequency signal. This is clearly the
case for PLLs [34], but also the case in the AC mode of an
atomic force microscope (AFM) [62]. Likewise, the position
signals are encoded in high frequency bursts in hard disks
[63]. In these cases, the standard methods of demodulating
error signals are often envelope methods that are not coherent
and therefore not only let a lot of unnecessary noise into
the error signal [64], but often have long delays to detect a
change in value. Coherent methods can do a lot to address
both of these issues, but it requires delving into the non-sexy
world of demodulation, with the eye towards producing an
error signal that is far cleaner and far faster [13], [65], [66],
[67], [68].

In many practical applications, the work around is to do
low bandwidth control, e.g., PI control, throwing in some
broad (i.e., robust) notches to damp particularly bad high
frequency regions, and run tests whose results (consciously
or not) make sure that the noise amplification of the feedback
controller’s disturbance rejection does not fall in a frequency
band where there is a lot of broadband noise.

The obvious problem with this approach is that it severely
limits the achievable bandwidth. To do differently, we have
to model the system far more closely at high frequency and
we need to understand noise sources and their effects on the
loop (Section XVIII).

X. SUMMARY OF THE DISCONNECT

Putting this all together one would surmise that while
academic controls research is filled with state-space and
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optimality, most industrial control of mechatronic systems
is filled with hardware choices, PID controllers, a few
filters, and some simplistic programming. Even a system that
allowed one to directly implement designs from Matlab in
real-time floating point DSP (Section III) under performed
a system that implemented a handful of leads and sampled
fast. It is against this backdrop that I received a call from
a Ph.D. student at a school in the middle Atlantic region
of the United States back in 1994, in which the student
started by saying how they had read some of my papers
and found them quite interesting, and then proceeded to
say, “I am very interested in working on optimal control.”
Before I could stop myself, the words reflexively jumped
out of my mouth, “Me, too, pal.” To that former student, my
apologies, however, I would have loved a chance to work on
optimal control, or on adaptive control, or on any advanced
methodology. Instead, all of my work was driven by the
physics and business models [13] of the problem, not by
any preferred methodology.

It seems fairly universal that practicing engineers and hob-
byists alike take an approach of “divide and conquer” for all
of these control problems. Consider the humble operational
amplifier (op-amp) [51], [69]. Designing complex circuits
without op-amps is difficult, because one part of the circuit
will load all the other parts. The op-amp provides separation
of the different sections of the circuit, allowing the designer
to focus on one isolated problem at at a time. Likewise,
the analog filters that notch out harmonics generated by the
phase detector in a PLL reduce the problem to one of looking
at the phase – a feedback problem for which the plant has
been reduced to an integrator [34]. At that point, the control
design is PI control. Likewise, in mechatronic systems, a
practicing engineer or hobbyist will add in filters (analog or
digital) to remove the effects of resonances until the problem
can be dealt with using a PID controller (analog or digital)
or a fuzzy control block. The plant might not have started
out as second-order, but the tweaks went in until the needed
“controller” is very simple and physical. In fact, this idea
of isolation, of divide-and-conquer, is pretty fundamental
and clarifies the work because the individual fixes have a
close tie to the physical phenomenon they are addressing.
Even a series of biquad filters to deal with a large number
of resonances and anti-resonances in a flexible system, is
easy to understand, as each second-order numerator and
denominator can be assigned to a particular feature of a Bode
plot. It reminded me of something my first controls professor,
Bob Snelsire at Clemson University had said, “All problems
are second-order and no problems are second-order.” While
Bob was talking about looking at the large scale, baseband
behavior of the system, it seemed that practicing engineers
beat the problem until it became “second-order” and then
were able to apply simple control methods to the new
problem.

On the other hand, our optimization tools, seem to be
based on giving up structure to a polynomial or canonical
form, so as to let the math work more easily. In doing so, in
handing the problem over to our optimization tools, we have

given up on the physical intuition that many of the classical
methods gave us. Automatic curve fits [70], [71] give us 16th

order models for what physics and our FRF measurements
tell us are 6th order dynamics [72]. Even then, the coeffi-
cients of our models may only show a few LSB changes for
hundreds of Hertz worth of frequency difference. Our tools
tell us to trust the math, but experienced practicing engineers
never trust an answer that does not simplify to something
physically observable. Is it any wonder that explanations of
optimal control and Kalman filtering are almost always done
with first and second-order examples? The difficult/advanced
examples might include a double integrator and a single
resonance, but after that, the relationship of the states to the
physics is often lost – particularly after a ZOH equivalent
[18] discretization.

This brings to mind another disconnect: discretization.
Early in our control education, we learn about the different
methods to discretize a dynamic response, and then we
promptly ignore most of them. It seems that much of the
textbook work involves discretizing a plant system model and
then applying digital control to that, while industrial mecha-
tronics work is more likely to have analog plant models and
analog controllers which then get implemented with a dis-
crete equivalent. Furthermore, separate discrete equivalents
are implemented for different parts of the controller, the PID,
the filters, etc. which means that each controller component
is discretized independently. While this may overestimate
the computational delay, it does keep the controller very
physical, very understandable. Compare this to the single
discretization of a large plant model where the relationship
between discrete plant coefficients and their physical origin is
obscured, along with the high-order discrete controller which
is far from physical. While one can argue that working with
such a discretized plant is more mathematically accurate, if
model reduction is applied, this claim is much weaker.

Taking a step back, this dichotomy comes from a feeling
that optimization and physical structure require different
models, that they are an either-or proposition. However, I
believe the problems can be rethought, that we can design
control structures that preserve physical intuition, but allow
us to use our math tools. The rest of this paper will
list a series of methodology adjustments – which, while
useful on their own – start becoming incredibly powerful
when put together. I hope to convince the reader that
these adjustments do much to push advanced methods in
a direction that makes them practical.

XI. PRINCIPLES FOR MECHATRONIC CONTROL

In a plenary lecture at the 1998 American Control Con-
ference, Babatunde Ogunnaike was describing large scale
chemical process control problems at DuPont. After showing
the layers of industrial processes and management buy in
from different groups, he finally got to the “control” part,
saying something to the effect of, “Process control is 90%
process and 10% control. Only once you have done all of
these things do you get to do your ẋ = Ax + bu.” This
rang true to everything I experienced before and since that
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talk. However, I found that many folks working in industrial
control problems got so tied up in that 90% that they forgot
to apply some basic guiding principles of control to their
overall problems. Once I started doing that, I found that I
was able to make a fair amount of progress.

Putting all of the above together, a pattern emerges that one
can exploit to make mechatronic control far more practical
than the standard academic state-space models and yet far
more exciting than a “PID and some notches” approach that
are so common. The principles will be stated here, and they
will be followed by sections describing the implementation
of these principles.

• Integrators are really, really easy to control. Therefore,
if we can make the open-loop response look like an
integrator, we have a system that is very easy to control.
If we can properly identify and compensate for all our
high-Q dynamics, i.e., if we can beat our open-loop
response into the shape of an integrator response, then
our limits become noise and latency.

• Most mechatronic systems are second-order plus some
crap. A smart PID will take care of the baseline second-
order (Section XIII), while equalizing the crap out
(Section XV) will give us our integrator like open-loop
response.

• This depends upon carefully identifying the complex
dynamics of the system. This involves precise frequency
response measurements (Section XIV) and smart curve
fitting (Section XVII).

• Latency, latency, latency! When everything else is done,
the first main limitation is latency (Section XII), since
as Yogi Bera says, “It’s hard to make predictions,
especially about the future.” An appendix to this lim-
itation is uncertainty or jitter in that latency. In many
problems today, the digital systems are so fast relative
to the time constants of the devices being controlled
that latency can be (and often is) ignored. However,
for any problem where bandwidth will be pushed to
the achievable limit, that limit is imposed by latency.
Furthermore, one cannot simply have a fast DSP chip
and ignore the latency of tenth-order Butterworth filters
on the inputs to the ADCs and the outputs of the DACs.
Instead, the entire loop has to be considered in the
latency calculation.

• The other main limitation is noise. We might count other
disturbances into this, but these can often be detected
with a separate sensor. Injection of broadband noise into
the loop must be minimized at the source so that we can
minimize moving around Gunter Stein’s dirt subject to
Bode’s Integral Theorem. Put extra effort into detection
schemes (Section XVIII).

• Once the dynamics have been identified and the overall
loop shaping has been done the gain can be set subject
to gain and phase margin constraints as well as closed-
loop constraints (Section XII).

• High bandwidth feedback control amplifies sensor
noise. High bandwidth feedforward control does not.

When applying the same modeling principles above
allows us to apply feedforward control to the predictable
parts of the system, it should be done (Section XXII).

• If you can expose physical parameters that are changing
or unknown to your discrete-time system, you can adapt
for those with excellent results (Section XIX).

• You can even create state-space models that are accurate
and numerically robust (Section XX).

• You can’t have any of this without models based on fre-
quent and accurate measurements, and you won’t make
frequent and accurate measurements if they involve a lot
of grunt work. Ergo, connect your measurement system,
your physical system, your real-time system, and your
CAD system together in a way that makes it trivial to
pass measurements, models, and designs amongst these
tools. Time spent on this aspect almost always is paid
back by an order of magnitude or more return, in the
speed and the quantity of measurements.
The problem with this is usually not the technology to
do it; but the will of the engineer and their managers to
put up with the busy work needed to make this happen.
Engineers hate spending time away from their main
area of contribution, fearing it will make them look like
they are wasting time. Programmers hate the inelegant
interfaces to instruments and the classless nature of real-
time programming. Managers consider such projects out
of the main line of contribution and not easily accounted
for in Microsoft Project.
However, the low overhead, self consistent connection
of time and frequency measurements with CAD pro-
grams such as Matlab, Octave, Maple, Mathematica, or
Python, and with the real-time processing system open
up whole new vistas for co-measurement and design.
Consider the humble frequency response measurement.
To do such a measurement, one must connect to analog
or digital test points, set up the measurement, run the
measurement (with appropriate levels of repetition for
averaging and statistical confidence), and then transfer
the data back to Matlab or its cousins. It is always
amazing how many good engineers are willing to do
all these steps manually and repeatedly over the course
of months, rather than spending a couple of weeks to
make it all happen with the push of a button (modulo
the wiring, which we deal with in Section XIV).
On the other hand, programming real-time digital con-
trollers is hard enough without trying to add in sophis-
ticated FRF generation code, and so much is done from
time domain measurements or FFTs of time-domain
measurements. Breaking down the barrier allows mea-
surement decisions to be made based on what is best
for modeling. It also allows measurements to be done
repeatedly and quickly so that modeling is based on the
best of many measurements rather than “that one time
we actually got some lab data.” Spend the time to make
the data path trivial and consistent, and everything in the
control design gets better.

• Although engineers like to tackle these problems in
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isolation, and managers like having an individual who
“owns” one aspect of the project, all of the above need
to be tackled from a systems point of view.

XII. FEEDBACK CONTROL OF AN INTEGRATOR
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Fig. 11. Plot of open-loop integrator + PI control, without time delay.
Essentially, if the PI action is far below crossover, the effects on stability
can be ignored, and they usually are. Note the well behaved closed-loop
sensitivity and complimentary sensitivity, owing to the 90◦ phase margin.

Perhaps the easiest open-loop system to control is an
analog integrator, K/s. In the absence of delay, it has infinite
gain margin and 90◦ phase margin (PM). As plotted in Figure
11, we see that the sensitivity function, S, has no peaking
and the complimentary sensitivity function, T , is an ideal
low-pass filter, also with no peaking. Even the addition of
a control filter is simple. With the desire for high phase
margin any filter action would be removed long before gain
crossover. The most likely controller is a lag filter where the
pole may or may not be an integrator (PI control). Such a
system is usually stable even when discretized and saturated
subject to any extra delay in the discretization [38]. This
explains the seeming lack of analysis done in PLL work.
Even PID control of second-order systems can be viewed as
an attempt to close the loop on an open-loop integrator [45],
as we will see in Section XIII. However that example also
illustrates many of the difficulties involved in “turning the
open loop into an integrator”.

As Figure 12 shows us that delay is our primary culprit
here, it is worth the effort to look at simple delay calculations
for a system whose open loop is an integrator. One would
imagine that the chief source of pure time delay in a digital
controller would be the sampling action. In a discretized
system with sample period, TS , one can assume an average
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Fig. 12. Plot of open-loop integrator + PI control, with time delay. The
effects of pure time delay limit the bandwidth that can be achieved with
60◦ phase margin and add some peaking in the sensitivity function.

latency due to sampling, TS

2 , or a worst-case latency, TS .
However, the full delay of the digital component would
include any extra delay in the ADCs, DACs, computation,
and communication. Thus we really have, TD, defined as:

TD =
TS

2
+ TSH + TADC + TDAC + Tcomp. (14)

The average delay of seeing events due to sampling has been
augmented by the amount of time it takes the digital system
to be able to respond to the data when it sees it (Figure 9).

From this, pure delay, one can add the negative phase
effects of delay as:

D(jω) = e−jωTD with angle � D(jω) = −ωTD. (15)

With phase margin, PM, in degrees, our open-loop phase
looks like:

−ωTD + � K

s
≥ (−180 + PM)

π

180
or (16)

ωTD = 2πfTD ≤ (90− PM)
π

180
, so (17)

f ≤ 90− PM

360TD
. (18)

In particular, for a desired phase margin, Equation 18 gives
the highest crossover frequency for the open-loop gain plot
of the integrator, using the delay of TD. For the conservative
phase margin of 60◦ we have the simple formula of

f ≤ 1

12TD
. (19)
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In an ideal world, where the data conversions, computation,
and communication are instantaneous, if we use the average
sampling delay of TD = TS

2 , and the conservative phase
margin of 60◦ we have the simple formula of

f ≤ 1

6TS
=

fS
6
. (20)
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Fig. 13. Plot of open-loop integrator, with fixed time delay. This plot shows
the consequence of adjusting the open-loop gain crossover to achieve phase
margins of 15◦, 30◦, and 60◦. Note the closed-loop peaking that results
from pushing the open-loop gain crossover to the point of such low phase
margin.

Why spend much time on such a trivial plant? First
it is a ubiquitous plant (see Section VI). Furthermore it
gives us a representation of the best case plant that we can
control and what limits it. No matter what else we do in
our controller, it will be hard to improve on the open-loop
crossover frequency limit in Equation 19. We can see that
even with such a simple open loop, with a given TD, if we
choose bandwidth over phase margin, we are subject to the
closed-loop peaking shown in Figure 13. It seems unlikely
that any more complicated open-loop system will do any
better. Thus, if we pick the conservative phase margin of
60◦, we then get an open-loop crossover limit based on that,
and this limits our closed-loop bandwidth, as shown in Figure
14.

Finally, seeing the simplicity of controlling an integrator,
an effective control strategy might be to equalize the open-
loop response until it looks like an integrator (allowing for
some extra integral action at low frequency and some extra
roll off at high frequency) and then to set the gains to adjust
the crossover frequency.

Even though the equalized system in this step cannot be
analyzed as simply as the pure integrator, it is straightfor-
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Fig. 14. Plot of open-loop integrator, with varying time delay. Gain is
adjusted for maximum open-loop crossover that achieves 60◦ phase margin.
The seemingly obvious result shown is that for an open-loop response that
looks like an integrator with time delay. It is the time delay that limits the
closed-loop bandwidth for a desired phase margin.

ward (albeit tedious) to design Matlab/Octave/etc. scripts
to perform this optimization on designs applied directly to
FRF measurements. All of the plots in Figures 11–14 were
generated this way. Examples of this will be shown in Sec-
tions XIII and XVII. However, while this is philosophically
easy, the results in Section XIII show that there are major
technological pieces that have to be in place to make the
control system that simple.

XIII. PID WITH A PH.D.

We return to the question of why PIDs are so ubiquitous.
Why is it that if one refers to a controller as a controller,
non-engineers will be confused, but if one calls it a PID,
they will know what function the block accomplishes. How
is it that so many industrial control engineers working on
systems both mechatronic and otherwise can simply drop in
a PID and get reasonable results. One can argue that they
are simply naive or unthinking, but I believe that:

If something keeps working over and over
again in widely varying situations, it is probably
not complete nonsense. There is probably a fun-
damental reason for this. It is worth the effort to
understand that fundamental reason and how far
it can be applied, i.e., what limits it.

In retrospect, this would seem obvious, yet it is often ignored
in practice. Making a gross oversimplification, I will say
that my professor friends generally ignore such a simple
algorithm as being uninteresting for research, while my
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industrial friends generally never ask themselves why this
thing keeps working. The questions of why these simple
things work so well have stayed with me for a long time
and I will try to give insight here.

This section’s name is a takeoff on Tim Wescott’s excellent
trade article, “PID Without a PhD,” [39] in which he de-
scribes in layman’s terms the components and programming
of a computer based PID controller. In making his article
accessible to anyone with programming skills, he glosses
over some readily available intuition that we will discuss
here.

A digital PID is often programmed as three parallel
terms, which are then programatically summed together.
The discretization is almost always using a backwards rule
equivalent on the individual terms [18], [40], [42]. This
should surprise most control engineers since the backwards
rectangular rule is considered less accurate than a trapezoidal
rule equivalent or a Zero-Order-Hold equivalent. Further-
more, it is far more conservative, mapping the jω axis into a
smaller circle within the unit circle on the Z-plane. However,
the discretization is being applied to the controller, not the
plant model The overly conservative approach is actually a
savior, because the pole of the discrete D term in the PID
ends up at z = 0, rather than z = −1 as it would for a
trapezoidal rule equivalent without filtering [44].

It seems that in practice, a lot of systems are largely
modeled as being second-order. Put another way: since
second-order systems are so much more tractable than
higher-order ones, a lot of engineering goes into making
the system to be controlled “second-order”. This includes
redesign of mechanics and/or addition of analog filters so
that the system the controller sees is largely second-order.
Given that, mechatronic systems can often be considered to
be a second-order part plus resonances. In the case of a hard
disk or a wafer stage, that second-order part is usually a
double integrator. In the case of an optical disk or an AFM,
that second-order part is a spring-mass-damper. In a perfect
world we could operate above the second-order resonance
and simply add lead to the mass line of Figure 7, making
the Bode plot beyond the resonance look like an integrator. In
a less perfect world, one might try to equalize the resonance
of the second-order section and then proceed towards our
integrator shape.

It became clear that the linear PID form could be analyzed
as a second-order filter with an integrator and low pass in
the denominator and a pair of possibly complex zeros [44].
From there, it seemed that using that filter to equalize the
response of a mechatronic AFM actuator was the next step
[45]. A measurement of the response was made in closed-
loop using an existing controller, the loop was opened and
the controller model factored out. This is the blue curve of
Figure 15. In wanting to avoid problems I had previously
encountered in curve fits, I adapted the HP 3562A curve
fitter [71] by restricting the numerator to a constant and
the denominator to a simple second-order section over the
frequency range of the main actuator resonance. A successful
fit is shown in the green curve of Figure 15. The resonance
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new open-loop response.

parameters were then used to design a second-order notch
which was programmed as the numerator of the PID. With
the terms of the numerator matched with the digital KP ,
KI , and KD blocks the resulting filter acted to equalize out
the resonance, making the open loop response look much
like an integrator, as advocated in Section XII. At that time,
a selection of the gain based on phase-margin and closed-
loop peaking constraints resulted in the PID controller (cyan
curve) and open-loop response (green curve) of Figure 16,
and the projected closed-loop response of Figure 17.

This solution had all the elements needed to create a self
tuning high performance mechatronic control loop, but they
were all flawed. First of all the FRF measurement was done
by computing FFTs of time domain data captured on the real-

237



10
2

10
3

10
4

10
5

−40

−20

0

M
ag

 (
dB

)

Freq (Hz)

Projected New Closed−Loop Frequency Response Function

CL BW: 31.5 kHz

CL Peak: 1.9 dB at 25.0 kHz

10
2

10
3

10
4

10
5

−200

0

200

P
ha

se
 (

de
g)

Freq (Hz)

Fig. 17. Projected closed-loop response of AFM system with loop closed
on the mass line.

time system. This accounts for the “hash” at high frequency
seen in the measurements of Figures 15 and 17. To fix this, I
would need to get back to a stepped-sine measurement, and
the only way to connect this into the AFM controller was to
build it in (Section XIV).

Second, although this actuator was a MEMS actuator
which had only the main motor resonance and another
flexible resonance, it was next to impossible to manufacture.
Thus, we moved to a small piezo actuator with many
resonances. A single notch would not cover them all, and
stringing together a serial set of notches implemented as
independent biquads gave too much computational latency.
Thus, we needed a low latency filter that still maintained the
numerical accuracy of biquads (Section XV).

Next, the problem of curve fitting had to be solved so
as to match the FRF measurements to models that could
then be used in compensator design (Section XVI). Finally,
the automated loop shaping had to be expanded to take the
“turn the open-loop into an integrator” philosophy and make
it work for a much more complex system (Section XVII).

Only by solving each of these problems could a general
open loop automatically be turned into something that looks
like an integrator. The sections that follow will describe how
each of these pieces of the puzzle was solved and put into
place and what that means for overall mechatronic controller
design.

XIV. BUILT IN STEPPED-SINE MEASUREMENTS

A generic control system is shown in Figure 18. Iden-
tifying the many component blocks in the system involves
injecting and extracting signals at multiple locations. Further-
more, the majority of access points are buried in the digital
controller itself.

Using an instrument through analog test points involves
not only creating those test points with circuitry, but also
forcing many signals that were digital to be converted to
analog signals before being measured with our external
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Fig. 18. Block diagram for controlled system showing stimulus points and
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instrument. Using digital test points would be preferable,
but as described in Section III, my original efforts to use an
external digital instrument also failed in part because of the
difficulty of connecting that instrument into the test system.
In retrospect, it became clear that the FRF measurement
system had to be built into the controller so that the digital
connections could be made programatically, rather than with
test pods.
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Fig. 19. A comparison of FFT and stepped-sine based FRFs on an nPoint
NPXY100 [73] stage. (Courtesy: Jeff Butterworth.)

Likewise Fast Fourier Transform (FFT) based methods do
not focus signals in any one feature area, instead relying on
broadband excitation (pseudo-random, noise-like signals) or
on a chirped sine signal. FFTs are computationally fast, but
this speed comes at a price. Besides the lack of frequency
isolation on the input, the frequency bins are fixed for a
given sample rate and number of samples. For this reason,
stepped-sine responses typically produce much “cleaner”
measurements, especially at higher frequencies where the
mechatronic system response is low as clearly seen in the
example of Figure 19. This is described in much greater
detail in [74], in which I describe a method of building the
complete real-time stepped-sine integration into the digital
controller as an extra FPGA block. An earlier comparison
was done in [75], focusing on the effects of SNR.

Another method that is quite popular is the use of multi-
sines [25] in which harmonically related sinusoids are used as
the stimulus into the system. These have the advantage over
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random and pseudo-random inputs in that they are periodic
and so have no leakage. However, the analysis of signals
stimulated by multisine inputs is still done using FFTs and
this suffers in signal to noise immunity compared to the use
of coherent demodulation associated with the stepped-sine.
Furthermore, while the input signals are free from leakage,
avoiding leakage in the integrated Fourier terms is difficult
because while the frequencies of the input sines can be
controlled, the sample frequency of the digital measurement
system is usually fixed. This means that while one set of
multisine frequencies might tile into the sample frequency
of the digital system, the next set over most likely will not.
The method of [74] adjusts the input sine frequencies to
always be an integer divisor of the sample frequency so as
to minimize integration artifacts.

Proponents of FFT based methods have noted that the
former are much faster than stepped-sine. Certainly, the
computation is much simpler, but in the 50 years since Coo-
ley and Tukey first described the FFT [76], computational
power has changed dramatically. We should be able to apply
the massive computational advantage to save engineering
time, by taking advantage of the improved SNR of stepped-
sine. Certainly, it is understood to practitioners that while
FRFs based on FFT methods often require large numbers of
averages (e.g., 20–100 are not uncommon), the same system
measured with stepped-sine methods will require far fewer
passes (e.g., 3–10). Furthermore, the advantages shown in
Figure 19 mean that far less engineering time is spent trying
to guess at unmeasured high frequency dynamics.

One final reason to have built-in stepped-sine is that the
method continues to work reasonably in the presence of
nonlinearity. In fact, recognizing that stepped-sine produces
a measurement of a nonlinear system’s describing function
[78] one can compare stepped-sine measurements to simu-
lated stepped-sine measurements when the system exhibits
a nonlinearity to help identify that nonlinearity, as shown
in Figure 20 [77]. While it might be possible to adapt the
method in [74] to be composed of multiple harmonically
related sine waves inspired by [25], the method would need
separate mixers and integrators for each harmonic frequency
to preserve the signal quality. This is entirely doable if one
wishes to devote the chip area on an FPGA, but makes
autogain of the signal and identification of nonlinearities as
discussed in [78] and [77] more difficult.

XV. LOW LATENCY FILTERING FOR MECHATRONIC

SYSTEMS

It is well understood that the phase lag due to latency in a
feedback loop erodes stability and performance characteris-
tics. For a causal filter, the latency is in part determined by
the filter length. That is, if a filter has N taps and a sample
period of TS , then the average latency through the filter
will be N

2 TS . IIR filters are usually favored over FIR filters
in feedback loops, as they can achieve similar bandwidth
shaping with considerably smaller average delay.

The second source of latency is simply the time required
to compute the filter equations between the time that a new
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Fig. 20. The top picture shows HP’s 1.3” KittyHawk disk drive, 1994
[77]. The bottom two plots show Bode plots of the response from the voice
coil motor to the head. The solid curves are laboratory measurements made
with the HP 3562A in stepped-sine mode. The dashed curves are simulated
measurements made by simulating the stepped-sine algorithm in Simulink
[78] with a model of the drive actuator that included nonlinear feedback
elements. The different colors represent different input amplitudes. Notice
that the frequency response functions change with varying input amplitude,
a sure sign of nonlinearity.

sample comes into the filter and the filter produces its output.
This delay is generally - but not necessarily - less than one
sample period, but it is complicated by the fact that it can
change with the number of taps in a filter. That is, a second-
order filter obviously takes fewer computation steps than a
tenth-order filter. This variable latency can cause unexpected
problems with the control loop. A standard technique to
minimize this variable latency is to compute everything that
does not depend upon the most recent sample ahead of time
in a precalculation [42], diagrammed in Figure 9. Once the
most recent sample arrives, the last few calculations are
performed and the filter output is produced. This has the
benefit of not only minimizing the computational latency,
but also of making it independent of filter length.

The structure of the multinotch allows it to minimize
the computational latency using precalculation, while still
preserving the numerical properties needed for finite word
length arithmetic.

Restructuring the polynomial filter as a cascade of biquads
improves both the physical intuition and the numerical prop-
erties of the filter. However, it made precalculation in order
to minimize filter latency impossible until the multinotch
reformulation described in [56].

Y (z)

U(z)
= Nn(z)Nn−1(z) · · ·N1(z)N0(z) (21)
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Fig. 21. The updated biquad cascade, with factored out b0 terms.

= bn,0 · · · b1,0b0,0Ñn(z) · · · Ñ1(z)Ñ0(z) (22)

where

Ñi(z) =
1 + b̃i,1z

−1 + b̃i,2z
−2

1 + ai,1z−1 + ai,2z−2
(23)

b̃i,1 =
bi,1
bi,0

, and b̃i,2 =
bi,2
bi,0

. (24)

The direct feedthrough gains are concatenated together as:

b̄ = bn,0bn−1,0 · · · b1,0b0,0. (25)

This simple change allows precalculation to be done on a
biquad by biquad basis. with precalcs implemented as:

d̃i(k) = ˜preci,1(k) + ũi(k) and (26)

ỹi(k) = b̃i,0d̃i(k) + ˜preci,2(k) where (27)

˜preci,1(k) =−ai,1d̃i(k − 1)− ai,2d̃i(k − 2) and (28)

˜preci,2(k) = b̃i,1d̃i(k − 1) + b̃i,2d̃i(k − 2). (29)

Finally,

ũ0(k) = u(k), (30)

ũi(k) = ỹi−1(k) for i = 1 . . . n, and (31)

y(k) = ỹn(k). (32)

As described in detail in [56], this allows every downstream
section to be precalculated using it’s previous values and
previous values of the upstream sections. The current input,
u(k), is simply added in to every section in parallel. In par-
ticular, d̃n(k) can be completed as soon as u(k) is available
with one multiply and one addition, allowing ỹn(k) to be
completed with one more addition, and finally y(k) with one
more multiplication. Latency is low and does not increase
with increasing filter length, but the numerical properties of
the biquad are preserved.

At this point, precalculation has been restored and the
numerical properties have been preserved, as demonstrated
in Figure 22, with notch parameters described in Table I.
However, some of these numerical properties can disappear

Biquad # fN,n (Hz) Qn fN,d (Hz) Qd

1 200 10 400 10
2 1000 5 2000 5
3 10,000 10 20,000 10
4 8000 10 4000 10

TABLE I

FILTER PARAMETERS FOR MULTINOTCH EXAMPLE.
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Fig. 22. A comparison of the quantized multinotch to unquantized filters
in the example of Table I. Note that even without quantization, the discrete
polynomial filter no longer matches the analog response. The multinotch,
with even the coarsest quantization considered in these tests, s2.16, still
matches the analog response.

when the sample frequency is significantly higher than the
high Q dynamics being filtered. In this case, a simple switch
to the same biquad structure but with Δ coefficients solves
most of the issues [57].

XVI. IMPROVED CURVE FITTING FOR MECHATRONIC

SYSTEMS

Working on optical drives (Section III), my desire was
to move to MIMO models, which required model-based
control, which required parametric models of the physical
system. Extracting parametric models from the Frequency
Response Functions (FRFs) produced by the CSA required
curve fits, [15], [16], [17], [70], [71]. The CSA and DSA had
curve fitting algorithms that worked well on measurements
of analog circuits, but failed repeatedly on those of the drive
mechanism. Instead of a second or fourth order model that
physical intuition would have suggested, the models were of
high order, and contained unstable poles and non-minimum
phase zeros. A more mature version of myself would have
worked to improve the measurements from the start, but
it was sufficiently confusing for me at the time to realize
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that I could not use the existing tools to get parametric
models from which to work. While I should have recognized
that discrete-time FRFs needed to be sanity checked against
continuous time FRFs, the discrete-time representation of
high Q systems had issues.
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Fig. 23. FRF of biquad filter with fn,n = 100 Hz, Qn = 25, fn,d = 80
Hz, Qd = 12.5. Additive white Gaussian noise with σ = {0, 0.002, 0.02}
is added to the real and imaginary responses.
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Fig. 24. Complex curve fit applied to simple resonance/anti-resonance
with FRF noise σ = 0.002. At this point, the curve fit still seems to work,
and can match both minimum phase (MP) and non-minimum phase (NMP)
responses. (Cyan overlays blue, magenta overlays red.)

Consider the example in Figure 23. This is a fairly simple
second order section where the FRF has been corrupted by
adding various levels of additive white Gaussian noise to the
complex response. Two versions of the dynamics are plotted,
one with a complex pair of minimum phase zeros and a
second where the zeros have been flipped over the jω axis
to make them non-minimum phase. A simple version of the
complex curve fit is applied to this system, in that the order of
the complex fit is limited to be second order. For very small
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Fig. 25. Complex curve fit applied to simple resonance/anti-resonance with
FRF noise σ = 0.02. Even with this low level of noise, the complex curve
fit has failed badly.

amounts of noise in the FRF measurement, the complex
curve fit still works, as shown in Figure 24. However,
increasing the noise level slightly causes the complex fit to
badly miss the parameter locations, as shown in Figure 25.
Furthermore, the fit has missed the sense of the NMP zeros
as well.

One possible explanation is as follows: One of the prob-
lems with curve fitting results from small bumps in the
FRF magnitude that are not accompanied by matching phase
variations. Thinking about Bode’s gain-phase relationship
[79], we realize that if the magnitude variation is not ac-
companied by phase variation, the only way for the curve
fitter to explain it is by adding a pole-zero combination
that result in a magnitude blip and a net 360 degree phase
jump. Unfortunately, this is well suited to matching a high
Q resonance with a high Q pair of NMP zeroes. This kind of
issue with the linear fit makes the normal curve fit method
largely unusable. The examples here are very simple. For
responses with many resonance, anti-resonance features, it
only gets worse.

One major source of discrete-time non-minimum phase
zeros is the unwitting fitting of poles and zeros to pure time
delay, as discussed in [72]. One of the ways to approximate
delay is with a Padé approximation, and even at low order
this maps time delay to NMP zeros. Accounting for the delay
directly means that the compensator is only trying to account
for the part of the system it can do something about.

So, even if the FRF measurement is good, that is, even if it
is done using sine-dwell and has high coherence as described
in Section XIV, we are a long way from a usable state-
space model or a usable model for any sort of control design.
At this point, the missing piece was the ability to extract
reasonable models from good FRF measurements.

The situation in Figure 25 is telling, since even a simple
biquad with fairly low levels of noise in the FRF measure-
ment cause a pretty dramatic miss in the fit response. The
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Minimum Phase
Non−Minimum Phase
LM to MP

Fig. 26. Least squares fit assuming a biquad filter structure and using only
log magnitude (LM) measurement data. The fit done with the higher level
of noise, σ = 0.02, still matches the no noise response extremely well.

inspiration for a solution came in an old paper by Sidman et.
al. [80] in which they suggested two fixes: to work with the
log magnitude response (which would force an assumption
of a minimum phase system, but would de-emphasize noise
in the amplitude) and to do the fit by cycling through a series
of fixed dynamic models to see which produced the lowest
residual error. I guessed that if I could fit low-order dynamics
and remove them from the response – something I called
successive dynamic removal – then a series of low-order fits
would result in an eventual fit to the entire response. I was
asked to hand off my notes that detailed this strategy [81] (as
well as the Matlab scripts for automatic PID tuning [45], [82]
and multinotch parameterization [56], [57] to a new member
of the Agilent Labs AFM team, Chris Moon. Using this
approach, he found that if he used the multinotch of Section
XV, the built-in stepped-sine of Section XIV, Sidman et.
al.’s log magnitude fit, and Matlab’s lsqfit routine, he could
use successive dynamic removal to eventually turn the open-
loop response into an integrator. The filter that was fit to
do this was a combination of PID controller and multinotch,
with parameters automatically arrived at by the algorithm.
He made the assumption that resonances and anti-resonances
would be interlaced and added scripts to roughly approximate
these peaks and troughs to give a starting point for fitting
individual sections [83].

Applying this method to our earlier example results in
the very accurate match of the minimum phase dynamics as
shown in Figure 26, which shows none of the issues from
the complex fit. However, the assumptions of the fit are that
the system is minimum phase. To get around this, the fit can
be adjusted by a method that checks the phase residuals in
the area of an identified feature (resonance, anti-resonance,
or pair) and then makes an adjustment and checks the phase
residuals again. An example of this is shown in Figure 27
and this method will be discussed in [84].
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Fig. 27. Adjusted least squares fit to the LM curve, where the fit from
Figure 26 is subsequently checked for phase jumps near dynamic features.

XVII. LOOP SHAPING
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Fig. 28. Measured plant, compensator (PID+multinotch), and generated
open-loop frequency response for AFM x-axis actuator. The PID and
multinotch are automatically tuned to generate an open-loop response that
looks like an integrator over the frequency range of interest, allowing the
open-loop crossover to be set subject to phase-margin constraints.

As discussed in Section XII control of an integrator can
easily be optimized by hand in closed-form, but on real
systems which have to be shaped to resemble an inte-
grator generally require evaluation by computer. We can
use the integrator guidance to build software that searches
real measured responses (and projected designs on those
measured responses) to find our limits. This was shown on
a second-order response in Section XIII. For a mechatronic
system with many high Q resonances and anti-resonances,
the combination of PID and multinotch, guided by the tuning
described in Section XVI, yields results such as those shown
in Figures 28 and 29. Note in Figure 28 that the open loop
has indeed been shaped into the form of an integrator. The
limiting factor for bandwidth is the phase margin requirement
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Fig. 29. The measured closed-loop response from the design in Figure
28. Note the nice, low-pass look of the closed-loop response and the
minimal peaking. The closed-loop bandwidth can be adjusted from open-
loop constraints or closed-loop peaking constraints.

of 60◦. This does result in the closed-loop response of Figure
29 which has 308 Hz bandwidth and virtually no peaking.

Beating the open-loop response into an integrator is cer-
tainly not a unique concept, but a brilliant example of this
is described in [85] for adjusting the dynamics of the room
sized NASA Vertical Motion Simulator.

XVIII. IDENTIFYING AND LIMITING THE SOURCES AND

EFFECTS OF NOISE
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Fig. 30. PSD of PES, and PSD of PES filtered by 1
‖S‖2 .

As discussed in Section XI doing high fidelity control
on mechatronic systems involves equalizing out the para-
sitic resonances, limiting latency, and limiting noise. Why
minimize noise at its source before it gets into the loop?
As Gunter Stein’s legendary 1989 Bode Lecture [86], [87]
pointed out to us, Bode’s Integral Theorem [88], [89] tells
us that any noise that enters the feedback loop can not be
eliminated (at least not by linear filtering) but only moved
around.

For example, since disk drive actuators are essentially
double integrators plus resonances, the Position Error Signal
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Fig. 31. Decomposition of baseline noise sources in a hard disk.
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Fig. 32. Using coherent demodulation made up of specific harmonics of
servo burst (modeled on HP Cougar I servo signals) dramatically diminishes
effects of noise.

(PES) can only be measured in the presence of a feedback
loop. The normal “flat” PES spectrum is a closed-loop signal
and to get an “input noise” from measured PES, one needs
to back filter the power spectral density (PSD) by 1/‖S‖2.
Inspired by and recalling Gunter’s talk 5 years later, I did the
back filtering on the PES signal from a KittyHawk drive, and
produced the green curve of Figure 30, which was shocking
at the time. This drew reactions from the division servo
engineers akin to, “That just ain’t right.” They would look
at the plot, start to speak, stop, try to start again, and then
shake their heads.

This one “not right” plot led to a systematic way of
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evaluating many noise sources on disk drives, and building
up the noise strata. This became known as the PES Pareto
Method [64], [90], [91], [92], [93], [94], which we pub-
lished after HP exited the disk drive business. The results,
shown in Figure 31, surprising at the time, though not in
retrospect, that Position Sensing Noise (PSN) (generated
reading position from magnetic domains) and windage (air
battering the actuator) were the main components affecting
PES, directly led to work on improved airflow and position
sensing methods, including coherent demodulation [65]. An
illustrative result of this is shown in Figure 32, where
coherent demodulation is far less susceptible to white noise
than “rectify and integrate” methods. This work also led
directly to high frequency wobbles [95], [96] and coherent
AC mode demodulation for atomic force microscopes [13],
[67], [68].

The common thread leading back to this discussion is that
understanding the sources and system effects of noise in
the loop and then finding detection methods that minimize
these before they enter the loop should not be ceded to non-
control engineers. It is the systems view, the realization that
bandwidth cannot be pushed unless noise is attacked, that
makes these efforts worthwhile. Attacking noise in our signal
detection methods should be seen as a major key to high
bandwidth control.

XIX. WHEN YOU’VE DONE EVERYTHING ELSE RIGHT,
YOU CAN ADAPT

Voice
Coil

Motor

Spindle

Disks

a1

a2

Disturbance

a = a + a1 R T

a = a - a2 R T

Fig. 33. Head disk assembly under effects of external acceleration. The
individual accelerometers can be thought of as detecting the sum and
difference of rotational acceleration, aR, and translational acceleration, aT .
If the accelerometer gains are equal, then their difference gives 2aR.

The HP KittyHawk 1.3” disk drive was slated for mo-
bile applications where shock and vibration would be an
issue. While translational disturbances were assumed to be
decoupled because of the balanced rotary actuator, rotational
disturbances entered directly into the tracking loop. Further-
more, the sectored servo [9], [63] employed by hard disks
limited the sensor bandwidth of the PES signal. However,
there was no limit on accelerometer sample rates. This
allowed for multi-rate feedforward cancellation using the
accelerometer, building on the development of [97], [98].

At a poster session at the 1996 IFAC World Congress in
San Francisco [19], [21], Matt White was presenting work
on rejecting rotational disturbances in full size (5 1/4” at the
time) disk drives [32], [99]. Matt’s work was a careful study
with multiple adaptive parameters. At some point when the
session got quiet he turned to me and asked something to the
effect of, “How the heck does your work look so simple?”
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Fig. 34. Adaptive feedforward accelerometer compensation of rotary
vibration on a KittyHawk disk drive. The top plot shows the effects of rotary
disturbance with no feedforward. The red dashed lines are the offtrack limits.
When adaptive feedforward is turned on in the middle plot, the effects of
the disturbance are quickly minimized. In the lower plot, the drive stays
within the offtrack limits, despite the external rotary disturbance.

As we talked, a couple of differences emerged: First, the
smaller KittyHawk disk had simpler dynamics and I was able
to formulate the problem into a single parameter adaptation
of the unknown rotary accelerometer gain. This allowed a
simple Least Mean Squares (LMS) algorithm that switched
on only when there were sufficient levels of detected rotary
disturbance for the algorithm to have guaranteed persistence
of excitation [22] (Figure 34). The other difference was
that I had programmed the BMW (Section III) to sample
the accelerometer 4 times as fast as the PES. This simple
exploitation of a physical feature of the system dramatically
improved my rejection bandwidth.

Years later this “physically inspired approach” would
pay off again when I was doing some consulting work
on disk drives. Again the problem was rotary disturbance
rejection, this time by differencing two inexpensive linear
accelerometers that might not be balanced, as diagrammed
in Figure 33. The mismatch between the two, which could
be in the range of ±15% limited the benefits of such a
feedforward system [100]. Eric Miller had built a shaker
system that inadvertently shook the drive with both rotation
and translation. He was chagrined by this, as the translational
disturbances, aT , showed up in PES – which should not have
happened with a balanced actuator. The “Aha!” moment was
when we realized that the only way that aT showed up in
PES was parasitically through mismatched accelerometers,
and this provided the key to an augmented adaptation al-
gorithm. In this, the input from translational disturbance,
aT , to PES was used to equalize the accelerometer gains
while the input from rotational disturbance, aR, to PES could
then minimize the effects of rotational disturbances [101], as
shown in the plots of Figure 35. While these experiences are
by no means exhaustive, they do point once again to the
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retention of physical parameters, this time for adaptation,
as a means of dramatically simplifying control problems.

XX. STATE-SPACE MODELS FOR MECHATRONIC

SYSTEMS

At this point, the reader might assume that I have avoided
state space for much of my career, given all the problems that
present themselves. However, for the Quintessential Phase
(QP) Project Eric Johnstone needed to build a state estimator,
essentially an augmented state Extended Kalman Filter to
estimate turbulence in optical beam paths for interferometers
and compensate it [102], [103]. The mechatronic wafer stage
system would have a high number of high Q resonances as
had shown up in AFM actuators, but the estimator demanded
an accurate model. It turns out that the numerical accuracy
of the multinotch provided an insight: What if the multinotch
structure [56], [57] could be turned into a state-space struc-
ture with excellent numerical properties. The realization of
that structure is the biquad state-space (BSS) structure [104]
in discrete time, as described below.

Each of these biquad sections has a state-space realization,
taking the form of:[

xi,k+1

xi,k

] [ −ai1 −ai2
1 0

] [
xi,k

xi,k−1

]
+

[
1
0

]
ui,k (33)

while the state output equation is given by:

[
ỹi,k+1

]
=

[
b̃i1 − ai1 b̃i2 − ai2

] [ xi,k

xi,k−1

]
+
[
1
]
ui,k

(34)
The properly scaled output is generated via:[

yi,k+1

]
=

[
bi0

] [
ỹi,k+1

]
. (35)

The indexing of ỹi,k+1 and yi,k+1 are a bit odd since we
have direct feedthrough in our structure and ỹi,k+1 depends
on xi,k+1 as well as xi,k, xi,k−1, and ui,k. Thus, it’s cleaner
in what follows to call the biquad outputs, ỹi,k+1 and yi,k+1,
respectively. We chain these together by noting that:

ui+1,k = ỹi,k+1, for 0 ≤ i < n,
u0,k = uk, and
ỹn,k+1 = ỹk+1.

(36)

If one is willing to go through the algebraic pain and
suffering of applying Equation 36 to each biquad structure,
a very regular state-space structure results. For a 3-biquad
model, we get the state equation of 37. The unscaled output
is in Equation 38, both displayed in Figure 36 due to their
size. Finally, the properly scaled outputs are generated via:⎡
⎣ y2,k+1

y1,k+1

y0,k+1

⎤
⎦ =

⎡
⎣ b20b10b00 0 0

0 b10b00 0
0 0 b00

⎤
⎦
⎡
⎣ ỹ2,k+1

ỹ1,k+1

ỹ0,k+1

⎤
⎦ .

(39)

10
1

10
2

10
3

−50

0

50

100

150

200

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Rigid Body and 20 resonances:  Scalar gain scaling at output taps

10
1

10
2

10
3

−1500

−1000

−500

0

500

1000

Frequency (Hz)

P
ha

se
 (

de
g)

 

 

Filter FRFs
MultiNotch SS
Standard Matlab SS
Standard Matlab TF
Measured Plant

Fig. 37. Comparing state-space forms to Aerotech stage frequency
response. Modeling the system with first 20 biquads and a rigid body, there
is a massive difference between the conventional methods and the biquad
state-space method.

The results in Figure 37 are pretty dramatic. There is
another less obvious property of the BSS, which is that
each biquad block has been discretized individually. This
means that one could start with an analog version of the
BSS, as described in [105], and discretize each biquad block
separately. The result is that the biquad structure of the
digital version is the same as the biquad structure of the
analog version, although the internal behavior is different.
This means that taken two at a time, the states of the
digital version map directly back to the states of the analog
version. This allows the designer to generate a physical
model, transform this into an analog BSS model, discretize
this, and relate the measurements made using the discrete
model directly back to the physical model. I believe that this
is unique for higher-order discrete-time models.

XXI. CROSSING THE DISCONNECT

Section XX and the results of [104], [105] show that after
all the wandering, we are back to state space, but armed with
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⎡
⎢⎢⎢⎢⎢⎢⎣

x2,k+1

x2,k

x1,k+1

x1,k

x0,k+1

x0,k

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−a21 −a22 b̃11 − a11 b̃12 − a12 b̃01 − a01 b̃02 − a02
1 0 0 0 0 0

0 0 −a11 −a12 b̃01 − a01 b̃02 − a02
0 0 1 0 0 0
0 0 0 0 −a01 −a02
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x2,k

x2,k−1

x1,k

x1,k−1

x0,k

x0,k−1

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦
uk (37)

⎡
⎣ ỹ2,k+1

ỹ1,k+1

ỹ0,k+1

⎤
⎦ =

⎡
⎣ b̃21 − a21 b̃22 − a22 b̃11 − a11 b̃12 − a12 b̃01 − a01 b̃02 − a02

0 0 b̃11 − a11 b̃12 − a12 b̃01 − a01 b̃02 − a02
0 0 0 0 b̃01 − a01 b̃02 − a02

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x2,k

x2,k−1

x1,k

x1,k−1

x0,k

x0,k−1

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎣ 1

1
1

⎤
⎦uk (38)

Fig. 36. State equations for discrete-time biquad state-space [104] with scalar output scaling. Note the regular and intuitive structure which is very similar
to that of the analog version [105].

a new set of tools. The built-in stepped-sine and improved
curve fit results have allowed us to identify the system model
for high-Q plants in a mostly automated way. The “turn the
open loop into an integrator” design criterion has provided
– in conjunction with the structures to cleanly implement
this in real-time – a fairly robust, high performance design.
Finally, the translation of these measurement derived models
into numerically robust state-space forms with intuitive map-
pings between continuous and discrete-time representations
mean that real-time measurement and implementation of
these controllers is completely reasonable.

The objectives of the measurement and computation tools
are not that far different from those in [106] where the
integration of identification [107] with a design framework
for discrete-time control [108] is used to automate MIMO
robust control design of mechatronic systems, using identi-
fication uncertainty to guide control design. The approaches
both are pushing the strong link between the accuracy of
the measurement derived model and the control performance
asked of the design. Much of the difference is in the specific
form of the controller filters. In fact, it should be clear
that the identification presented here and the Biquad State-
Space structure are perfectly applicable to H2 optimal control
design. Finding a link to robust control design such as H∞
is a matter of finding a link between the highly structured
model uncertainty that would show up in the BSS and the
Δ uncertainty model used in H∞.

XXII. FEEDFORWARD

exref
xout

�

-
CFCLI

TCL

P

Fig. 38. Combined feedback-feedforward control using the FCLI input.

One more section shows how these methods can be used to
simplify, augment, and parallel model-based work. There is a
fair body of work on feedforward control, including the Zero
Phase Error Tracking Controller (ZPETC) of Tomizuka [109]
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Fig. 39. Measured TCL, FCLI , and TFF,FB on nPoint NPXY100 stage.
The x axis feedback controller was autotuned to produce the TCL response.
A new measurement was done, and from this a feedforward tune was done
to generate FCLI . The measurement was repeated to generate the combined
TFF,FB = FCLITCL response.

and the Zero Magnitude Error Tracking Controller described
but not called such in [110], [40] and discussed in Rigney
et al. [111]. Feedforward has also been a driving effort in
the X-Y control of AFMs [112], [113], [114], [115]. The
series of work on combined feedforward-feedback control
for mechatronic systems such as X-Y positioners for atomic
force microscopes [116], [117], [118], [119], [120], [121],
[122], [123], [124] point very strongly to the advantages
of using feedforward when the system is presented with a
reference signal. These methods largely depend upon first
generating an effective feedback controller based on a plant
model and then designing a feedforward controller based on
the closed-loop model generated from the plant and con-
troller models. The work in [120] and [124] did not assume
knowledge of the plant model, but only of the closed-loop
response, as diagrammed in Figure 38. Still, as described in
[118], [119] the objective was described as perfect tracking,
in which FCLI = T−1

CL. While this might seem reasonable to
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Fig. 40. Time response data measured using an Agilent Infiniium 54831M
digital scope on the physical system shows the effect of the feedforward.
From upper left to lower right, the reference input is a triangle wave of
60 Hz, 100 Hz, 200 Hz, and 300 Hz. At 60 Hz, both pure feedback and
combined feedforward/feedback controllers can match the first and third
harmonics constituting the triangle wave, but as the reference frequency
goes up, only the combined controller can keep up. The combined controller
can match the fundamental of the 300 Hz reference, but the third harmonic
is about 10 dB down, leading to rounding of the response.

do if TCL was minimum phase, most engineers would realize
that this result requires infinite bandwidth from FCLITCL,
which would not only violate the Nyquist Criterion, but also
cause the actuators to operate at high speed on amplified
quantization noise. A more practical look at this yields a
much simpler and more practical design method.

Realizing that the tools described earlier, particularly the
built in stepped-sine of Section XIV, with a digital patch
panel that allows us to make measurements from wherever
we want in Figure 18, we can easily make a stepped-sine
measurement of our closed-loop system. If we have adhered
to the design approach of making the open loop look like
an integrator and preserving 60◦ of phase margin, then our
closed-loop FRF, TCL(f) is likely to have the response of a
low-pass filter.

From here, we can measure TCL and generate our desired
transfer function shape (say a low-pass filter with more
bandwidth). Our fitting routines can then adjust a multinotch
to provide what ends up being a combination of lead-lag
filters and notch/bump filters. An example of this is shown
in Figure 39, where an nPoint NPXY100 stage was measured
in the X axis. A feedback controller was generated using a
combination of PID and multinotch filters as described in
Section XVII. From there, the feedforward controller was
generated as described above to almost triple the input-
output bandwidth. Note that unlike the perfect tracking
filter, we do not try to for infinite bandwidth. We can see
this in the plots of Figures 40, where the improvement of
reference tracking is very clear beyond the bandwidth of
TCL. The use of a double lead also means that the requested
increased bandwidth can be limited to something reasonable

for the physical system to achieve. Returning to our model-
based approach, we see that this is equivalent to asking for
FCLITCL to have a shape of a new low-pass filter with
approximately triple the reference to position bandwidth of
TCL alone.

XXIII. CONCLUSIONS AND FUTURE WORK

If there is anything that I have learned on this journey it is
that lack of analysis and optimality doesn’t stop most people
from working on “control systems.” In fact, the explosion of
cheap sensors and actuators, as well as inexpensive compu-
tation platforms such as the Raspberry Pi and the MicroZed
mean that we have witnessed only the tip of the iceberg.
Guidance from the control community would be welcomed,
but it has to be in clear, physically intuitive terms which
are extensions of what they are doing now, not wholesale
replacement.

I have never been a fan of the KISS (Keep It Simple,
Stupid) acronym because it implied the inability to do
complex things, either from the speaker or the listener. It also
implies that one or both lack intelligence. However, it is my
belief that we often make complex things overly intimidating
and even the brightest of us are keenly aware of the number
of times we have done boneheaded things. Hence, I would
like to propose the KICK acronym, which stands for Keep It
Clear, Knucklehead. We need to keep our explanations clear
and physical, as the folks listening are our customers. And
we need to make sure that the advanced methods provide at
least as much bang for the computational buck as the simple
methods.

That being said, methods that kept working in practice
did so for one or more fundamental reasons. The advanced
control background that caused me to look for those under-
lying factors revealed a lot that, in retrospect, seems quite
intuitive. Furthermore, if there is one absolute take away
from this work, it is that putting in the work up front to
make high fidelity measurements something that is repeatable
and easy, whether in the design stage or in the operation of
the system, pays dividends far beyond many of our most
sophisticated optimization methods. A long time ago, Gene
Franklin quipped to me, “Well, you can only control as well
as you can measure.” Likewise, you can only model what
you can accurately measure.

There are tremendous benefits of model-based methods.
They promise a close tie to the physical dynamic equations,
something that has been restored with the connection be-
tween analog and digital BSS models. They appeared to give
a systematic way to handle MIMO systems. It seems, though
that the intuition preserving approach may yield benefits
there. Measuring a 2 × 2 mechatronic system still requires
input-output FRFs of the four SISO systems and only after
those individual systems have been curve fit, can one really
talk about combining them into a more compact model. In
such systems, how close do dynamics have to be to be
considered common? By what metric will these be evaluated?
If the BSS preserves the model precision of a SISO system,
how do we choose between close biquad pairs to reduce the
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model of our MIMO system? These seem like worthwhile
directions to pursue. The goal is not to ignore model-based
or optimization methods, but to provide a rapprochement
between them and the physical intuition of classical methods.
The goal is not to ignore practicing engineers and hobbyists
for dealing with a too trivial set of mathematics, but to have
a set of tools that starts with their intuitive understanding and
can be iteratively improved to take care of more and more
dynamic features. We might call this approach Optimization
Inspired Classical Control.

American football coaching legend Lou Holtz was once
asked if the small town he was working in was the end of
the world. His response was, “No, but you can see it from
here.” Are we at the point where a few button pushes lead to
measurement based, mathematically excellent designs? No,
but we can see it from here. This understanding is merely a
starting point. There is still much work to do on tying these
types of methods into MIMO work. I hope to flesh out the
curve fitting methodology that works so in Section XVI with
the ability to detect NMP zeros [84]. Likewise, understanding
more of the trade-offs between Δ coefficients and the δ
transform is a key piece in automatically generating “safe
to implement” filter designs for use in high speed digital
hardware, which is often fixed point [125]. Finally, how do
we generalize adaptation so that it is on physically recog-
nizable quantities? Redefining advanced methods in such a
way as to make use of the more intuitive structures used by
long time practicing engineers not only garners more buy in
from those engineers, but seems to dramatically improve the
ability of those methods to be safely implemented.
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