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A Comparison of A Coefficients and the 0 Parameterization, Part I:
Coefficient Accuracy

Daniel Y. Abramovitch*

Abstract— The multinotch was introduced in [1] as a way
to parameterize digital filters so as to preserve numerical
fidelity of the filter while providing precalculation to reduce
computational latency. Still, as the sample rate got large relative
to the frequencies being filtered, the biquad coefficients in
the multinotch got sensitive. A coefficient adjustment called
A coefficients introduced in [2] worked extremely well on coef-
ficient sensitivity, but did not address potential signal overflow
problems. The § parameterization [3], [4] is another method of
adjusting digital filter coefficients to compensate for relatively
high sample rates. The § operator also has the advantage of
generating a differential form of the filter [5], which - for
high sample rates — approximates the internal behavior of a
cascade of analog biquad filters. This paper will compare the
coefficient accuracy of biquad filters that are parameterized
via fixed point J operators with those parameterized via fixed
point A coefficients. Follow on comparisons of internal signal
growth issues will be studied in [6].

I. INTRODUCTION

Fig. 1. An nth order polynomial filter in Direct Form II configuration [7].

Implementation of control systems often involves realizing
the controller in the form of either a state space realization
or a filter. Increasingly, the implementation is done digitally,
which means discretizing the filter or state space realization.
For this discussion, we will restrict ourselves to the filter
realization, but will keep in mind that these can be mapped
to state space forms as was done in earlier work by this
author [1], [2], [8], [9]. As has been noted in the work
leading to & parameterization [10], [11], [12], [3], [4], [5],
the combination of relatively high sample rates and finite
computational word length can cause problems, both in
coefficient accuracy and signal growth in the filter.

Consider a controller design in the form of a continuous
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time filter,

- bO,csn + bl,csn_l + e+ bn—l,cs + bn,c
s™ 4 al’cs”*I + ot ap-1,e5+ Gnye

C(s) (1)

which has to be discretized for implementation on a real-time
computer:

~ bo2" + biz" V44 b2+ b,
B z" + alzn_l +--tap_12+ay .

Equation 2 can either be a discretized form of Equation 1 or
it can be the result of direct digital design. We have chosen
the forms in which the leading coefficient of the denominator
is 1. This is not necessary, but is quite convenient when the
controller is implemented in digital form, since representing
the controller as a function of 2~

. by + blz*I + e+ bn,lz’”Jrl + b,z "
S l4azl 4 tag 2t gz
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3)

allows us to express the output directly as a combination of
past outputs and inputs:

ulk) = —aqulk—1)+ - —ap—1ulk —n+1)
—apu(k —n) +boe(k) + bie(k — 1)+  (4)

coot by_re(k—n+ 1)+ bye(k —n).

This is all well known. It is also the case that for “high-
Q” dynamics, such as those found in mechatronic systems,
that is those characterized by one or more resonances or
anti-resonances with very low damping ratios (and therefore
high filter quality factors or Qs), such digital representa-
tions often fall short, particularly with multiple features
(resonances/anti-resonances) spread across a wide frequency
range and a sample frequency that is several orders of
magnitude higher than some of the features. While we are
discussing the controller and not the system model here, it is
understood that the controller will have to equalize some of
those system features if we are to achieve high bandwidth
[11, [2], [13]. Another way to think of it is to consider a
state-space realization of the controller, which will include
an estimator to model the system dynamics. That estimator
has to hold a representation of those high-Q dynamics.
Furthermore, the work of [3], [4], [5] made obvious the
issue that as the sample frequency goes up relative to the
feature being controlled, the poles/zeros of the compensator
approach the point z = 1. What this means is that the
coefficients of Equations 2 — 4 do not change much even
when the physical parameters that they are supposed to
represent change a lot. Put another way, a difference of
several hundred Hertz in resonance frequency of the physical
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Fig. 2. Block diagram for implementing 6~ block in a filter.

system may be represented by a few bits worth of variation
of the filter parameters.

This has been addressed by the use of the § parameter-
ization, which remaps the digital filter (and therefore the
coefficients) into a “differential” form by mapping:

0= 10rz:1—|—A5 %)

A

where A is often the sample period, Ts. For the rest of
this paper, and to avoid confusion with A coefficients, we
will set A = Tg in Equation 5 and all other uses of the §
parameterization. As this is the form of the familiar Forward
Rectangular Rule integration discrete equivalent [14], we
know that one of the effects is to map the inside of the
unit circle back towards a line so that at very small T,
0 — s. The § parameterization starts with coefficients that
are already from the discrete form. As noise considerations
generally make it more prudent to integrate rather than differ-
entiate when possible, the § parameterization is implemented
using 6% form shown in Figure 2:

Ts ng_l

I =
z—1 1-—2z71

(6)

Two things to note here:

o This block is a discrete integrator, in particular a
Forward-Rectangular Rule integrator [14], which only
produces reasonable results when T is relatively small
compared to the dynamics being integrated. However,
the § blocks maintain their own state, and as digital
integrators, one has to be aware of the number of bits
needed to prevent overflow.

o The signals going into these ¢ blocks are in some
sense differential signals (as 6 — s) and so they are
generally smaller at low frequency and larger at high
frequency.

Alternatively, the multinotch puts Equations 2 — 4 into a
cascade of biquads [1], [2] to exploit the improved numerical
properties of having discrete coefficients of second order
sections where those sections are selected so that the pole-
zero pairs are as close as possible to each other. This creates
a situation where at frequencies far from the pole-zero pair,
their effect on the rest of the system response is negligible,
while close to the frequency of the pole-zero pair, the numer-
ator and denominator tend to neutralize each other and limit
the signal growth. The original multinotch showed signifi-
cantly improved fidelity of the fixed point filter coefficients
of higher order filters, while the A coefficients [2] made the
coefficients close to floating point in fidelity, even when the
sampling frequency, fs = 1/Ts, was significantly higher
than the filter frequencies. The A coefficients were inspired
by the same observation that inspired the  parameterization,

of the poles and zeros of the filter/controller all pressing
towards z = 1 as the sampling frequency got significantly
higher than the dynamics in question.

It perhaps is not surprising then, that there was some con-
fusion between A coefficients and the § parameterization in
early reviews of [2]. This brought up the question as to how
these two forms of dealing with high sample rates compare.
This paper will directly compare one of the salient features of
their performance, namely the ability to accurately represent
high Q features in a filter/controller implemented with fixed
point math. Issues with signal growth in fixed point math for
the two forms of the filter will be studied in [6].

It should be noted that while the & parameterization can
be applied to biquad cascades and to polynomial form filters
of the form of Equations 2 — 4, A coefficients specifically
exploit the structure of biquads (or a biquad cascade) and
so can only be applied to biquad structures. Thus, our com-
parison will be restricted to strings of biquads. In particular,
it should be possible to illustrate the pros and cons of each
version with two biquads, where one biquad has features
that are at frequencies several of magnitude lower than the
sample frequency and the other biquad has features much
closer to the sample frequency.

The remainder of this paper will be as follows. Biquads
with normal digital coefficients, A coefficients, and the
coefficients from the J parameterization will be defined in
Section II. Section III will generate two examples each using
a single biquad, parameterized in all three ways. The two
biquads will be chosen to be at frequencies an order of
magnitude apart to stress the coefficient range. Section IV
will generate Bode plots to illustrate the issues with the
different forms and Section V will draw conclusions from
that.

II. DIGITAL BIQUADS: NORMAL, A COEFFICIENT, AND §

PARAMETERIZATION
fni Center frequency of numerator (Hz)
WN,i Center frequency of numerator (rad/s)
QN.i Quality factor of numerator
Ny = Q}V - Damping factor of numerator
fpD.i Center frequency of denominator (Hz)
wp.i Center frequency of denominator (rad/s)
Qp.i Quality factor of denominator
(p,i= Q; - | Damping factor of denominator

TABLE 1
PHYSICAL COEFFICIENTS USED TO SPECIFY A BIQUAD SECTION.

In this section, we will discuss the generation of digital
coefficients for all three forms of our biquad. For uniformity,
we will assume that we have factored out b;( from the
numerator in all three forms. We will also restrict the
discussion to resonance/anti-resonance pairs, since it is most
illustrative of the issues we are trying to examine. Setting
n = 2 in Equation 3, we get a biquad

. bo + b12_1 + b22_2

-1
B(=") = 14+ a1zt +agz72 " @
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Fig. 3. A digital biquad filter with the bg term factored out.

In [1], [2] the filter was designed using the analog spec-
ification parameters of Table I and then digitized using
pole-zero matching [14]. The biquad form means that there
are no excess zeros to consider. The direct feedthrough for
each digital biquad, b; o, is factored out, to be used in the
computation of b. It can be used as is or can be altered so
that, for example, the DC gain of the biquad section will be

_ 1"‘51'12_1 +8i22_2
Bi(z™Y) =b; ’ : : 8
(=) =bio (1 a1z +a;022 ®

Equivalently we could use Equation 8:

2%+ Bi,lzl + 51‘,2 )

€))

22+ a1zt +ai

Bi(z) = bi 0 (

Equations 8 and 9 will be our base forms from which we
will derive coefficients.

For a biquad of the form shown in Figure 3, the individual
biquad coefficients are calculated as follows. For a; o, Bi72,
and Tg = f% we have

;o = e 2wp,iTsCp,i gnd bi,2 — e~ 20N, 5N, (10)

Whether the poles (or zeros) are a complex pair depends
upon |(p ;| (|Cn,|)- For |(ps| < 1 we have a complex pair
of poles and so

ai = =2e7P T3 cos (wp Ty 1= B, ) . (1)
If |(n,i| < 1 we have a complex pair of zeros and so
Bm = —2e wNiTsCN ¢og (wN,iqu /1 — {?\77i> . (12)

While these two cases represent cases when the desired filters
have very sharp peaks or notches (for example to equalize a
response with very sharp notches or peaks), there are other
possibilities. Setting |(p ;| = 1 (|{n,| = 1) means that the
poles (zeros) are real and equal, so

a; 1 = —26_wD'iTS<D'i and Ei,l = —2€_WN’1TSCN'i. (13)

)

Finally, [(pi| > 1 (|(n,:| > 1) means that the poles (zeros)
are real and distinct, so a;1 (b;1) are given by using the
cosh relation:

a1 = —2e~wp.iTsCD.i ¢ogh (wD7iT5, /(]%,i — 1) (14)

and

Bi,l _ _QB—WN,{,TSCDJ cosh (wNJTS\/C?V,ii—l) .

15)

The entire conversion routine, which turns the physical
parameters of Table I into discrete filter coefficients can be
implemented in a short Matlab or Octave function. These
coefficients can be thought of as the “normal” biquad coef-

ficients.
d,o(k) b u(k)

Fig. 4. A digital biquad with A coefficients.

In [2] the A coefficients were introduced to deal with fixed
point issues when the sample frequency was significantly
higher than the frequency of the filter features. Visually, the
structure of Figure 3 gets transformed into that of Figure 4
which allows the A coefficients to be scaled up for higher
accuracy. We derive them from the normal coefficients by:

(16)
ajon = a;1 — 1, (17)
biin =bi1+2, and (18)
b (19)

aj1 = —2+a;1a SO a1 = a1+ 2,
aj2 =1+ a;2n SO
big=-2+bi1n SO
bio=1+bion SO bion=Dbi1— L.

As shown in [2] we can shift the fixed point representation of
the A coefficients so that the products involving them have
many bits of resolution.

e(k) i.o(K) u(k)

Fig. 5. A digital biquad reparameterized with the § parameterization.

Finally, we wish to calculate the coefficients associated
with a § parameterization, for a structure such as the one in
Figure 5. If we evaluate Equation 9 as a function of ¢ as
defined in Equation 5, we get

(14 06T5)% +bi1(1+ 6Ts) + bio
B;(6) = b; 2 =1, (20

( ) -0 ((1+5Ts)2—|—ai71(1+5T5) + a2 (20)
which reduces to

bi 142 ¢ 1 14b; 14+bi2 c—2
1+T756 + T2 *5

Bi(67) = bio S . 2D
T 3 a;, +2 ¢ 14+a; 1+a;, —
1 Spt2omt g Depfos s

If we define:

ai1 +2 L+ain+aip

; _ ) , jg = —— 2 22

;1 Ts Q5.2 Tg (22)

B = LS and g = LRI 23)

S
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then we have

Bi(67h) = b (

1+ Bi16 1+ P62 (24)
1+ ai,lé_l + OCZ"Q(S_Q '

As noted earlier, as Ts — 0, a;,1 and Bi,l — —2 while
a;o and b;2 — 1, so that a; ; and 3; ; are both fractions
where numerator and denominator approach 0 [4].

III. COMPARING NUMERIC ACCURACY: METHODOLOGY

To examine the accuracy of the different filter parameteri-
zations, we will choose a pair of analog biquads and translate
them into discrete form.

The motivation for the A coefficients was that the biquad
coefficients got very close to —2 or 1 as Ts got smaller,
leaving little room for any coefficient accuracy in the biquad
multiplications [2]. It was shown that some of these truncated
coefficients led to pole/zero pairs outside the unit circle. The
A coefficients solved this problem.

On the other hand, the coefficients of a biquad generated
using § parameters are far closer to the analog biquad
coefficients, and so being close to the unit circle is not an
issue. Instead, the issue becomes one of the coefficient size,
especially for coefficients of high frequency biquads.

Example 1
fnn Hz) | Qn | fng Hz) | Qq
100 40 200 40
Example 2
fnn Hz) | Qn | fna Hz) | Qg
1000 40 2000 40
TABLE II

ANALOG BIQUAD PARAMETERS FOR TWO SINGLE BIQUAD EXAMPLES.

Continuous Time
Alc a2c bic bac
3.141593e+01 | 1.579137e+06 | 1.570796e+01 | 3.947842¢+05
5 bits 21 bits 4 bits 19 bits
6 param, fg = led
o 2 B1 B2
1.888251e+02 | 1.574585e+06 | 5.513008e+01 | 3.943445e+05
8 bits 21 bits 6 bits 19 bits
o param, fg = leb
ay Qs B1 B2
4.719967e+01 | 1.578868e+06 | 1.965425¢+01 | 3.947519e+05
6 bits 21 bits 5 bits 19 bits
o param, fg = le6
o o2 B1 B2
3.299454e+01 | 1.579112e+06 | 1.610262¢+01 | 3.947811e+05
6 bits 21 bits 5 bits 19 bits
TABLE III

COEFFICIENTS COMPUTED FOR THE BIQUAD OF EXAMPLE 1, WITH
ANALOG AND § PARAMETER COEFFICIENTS.

A quick look at Tables IIT and IV indicates that the biquad
coefficients corresponding to the J parameterization do get
close to the continuous-time coefficients and can be large
numbers. In the analog biquad form, the largest coefficients

Continuous Time
alc a2c blc b2c
3.141593e+02 1.579137e+08 1.570796e+02 | 3.947842¢+07
9 bits 28 bits 8 bits 26 bits
6 param, fg = led
aq aQ ﬂl 52
1.391414e+04 | 1.360487e¢+08 | 3.945670e+03 | 3.789818e+07
14 bits 28 bits 12 bits 26 bits
6 param, fg = leb
al Qs B1 B2
1.888251e+03 | 1.574585e+08 | 5.513008e+02 | 3.943445e+07
11 bits 28 bits 10 bits 26 bits
o param, fg = le6
ay Qs B1 B2
4.719967e+02 | 1.578868e+08 | 1.965425¢+02 | 3.947519e+07
8 bits 28 bits 8 bits 26 bits

TABLE IV
COEFFICIENTS COMPUTED FOR THE BIQUAD OF EXAMPLE 2, WITH
ANALOG AND § PARAMETER COEFFICIENTS.

Maximum Number
Format for Format fo,maz (Hz)
s18.0 (18-bit signed integer) 217 -1 57.6200
$25.0 (25-bit signed integer) 224 1 651.8986
$27.0 (25-bit signed integer) 226 1 1.3038e+003
$32.0 (32-bit signed integer) 23T 1 7.3754e+003
TABLE V

FIXED POINT NUMBER FORMATS AND THE MAXIMUM FREQUENCIES
THEY CAN HOLD.

will likely be related to the w3, ,, or w¥; ; terms. For a given
number format:

2

max_num_for_format = (27 fo maz) (25)

or

v/max_num_for_format
2

As we can see from Table V, frequencies in the neigh-
borhood of 10 kHz require 32 bits or more to hold the
coefficients. This matters because FPGAs have, for their
fastest operations, fixed size multipliers, typically 18 x 18
or 18 x 25 bits in the case of Xilinx [15] or 18 x 18
or 27 x 27 bits in the case of Altera [16]. The fastest,
lowest latency computation that we can do involves a single
hardware multiplier, and so we want to compare these.
Furthermore, most of these multipliers use signed, two’s
complement arithmetic, so the unsigned formats are not
available in hardware. For mechatronic systems, with some
natural frequencies in the tens of kHz, it is not reasonable to
use & coefficients in their raw form. This is a major issue.

fO,maa: = (26)

IV. COMPARING NUMERIC ACCURACY: RESULTS

The comparisons here will mirror many of the com-
parisons between conventional digital biquad coefficients
and the A coefficients in [2]. For simplicity and space
considerations, we will restrict our comparisons to signed 18-
bit coefficients. The rationale is that as we have established
that A coefficients will outperform conventional biquad
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Notch with s2.16 Coefficients
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Fig. 6. Bode plot of Example 1, with normal s2.16 digital biquad
coefficients

Notch with s2.16 A Coefficients
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Fi Bode plot of Example 1, using s2.16 A coefficients.

=

g 7.

coefficients, especially with limited word width and a high
sample rates, we would like to compare these to the behavior
of 18-bit § parameter biquad coefficients.

The issue is that we have seen in Section III, the
continuous-time coefficients, and therefore the biquad coef-
ficients associated with the ¢ parameterization, often require
far more than 18 bits to represent. It would be easy enough to
state that this limitation disqualifies the § parameterization,
but since we want an “apples-to-apples” comparison of the
accuracy of the three formats, we borrow a method used in
(2], [4].

We compute the § parameterization biquad coefficients
from Equations 22 — 23, and then find a common number
of bits to shift, IV, such that we replace o 1, o2, 3;,1, and
Bi 2 with s18.0 format versions such that:

ain =~ 2N x a1 as, (27)
Qo 2V X ;2 518, (28)
51,1 ~ 2N x 51‘,1,3187 and (29)
Bi2 2N X Bi2.s1s, (30)

and then convert these back to conventional biquad coeffi-

Frequency (Hz)
Notch, fs = 10kHz, 100kHz, and 1 MHz, f_Num = 100.00 Hz, Q_Num = 40, f_Den = 200.00 Hz, and Q_Den = 40
200 T T T

@
S

Phase (deg)
3
3
T

. 4L

a
=]
T

o .
10° 10’ 10° 10°
Frequency (Hz)
Fig. 8.  Bode plot of Example 1, with coefficients from a shifted ¢
parameterization.
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Fig. 9.
coefficients

Bode plot of Example 2, with normal s2.16 digital biquad

cients by reversing Equations 22 — 23.

airsis = (2M)ai1s18Ts — 2, (31)
aiosis = 1—(2Y)ai18Ts + (2Y)ay 051872, (32)
birsis = (2V)Bi1a8Ts — 2, (33)
binsis = 1—2M)Bi16asTs + (2™Y)Bi2.s18TE. (34)

(35)

The coefficients from Equations 31 — 34 can now be used to
form new conventional biquads for generating discrete Bode
plots, and these can be compared in a fair way. This has
been done for the two examples and the results are shown
in Figures 6 — 11.

The examples were chosen to pick the same filter shape,
but to shift it one decade closer to the sample frequency in the
second example. We can make some inferences by looking
at the notches with normal, A, and ¢ parameter coefficients.
In general, the normal coefficients work best when the filter
feature frequencies are closer to the sample frequency. As the
distance between them grows, so does the opportunity for the
numerical inaccuracy that motivated the A coefficients [2]
arises. In Figure 6 the frequency spacing is generally large,
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Notch with s2.16 A Coefficients
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Fig. 10. Bode plot of Example 2, using s2.16 A coefficients.
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Fig. 11. Bode plot of Example 2, with coefficients from a shifted ¢
parameterization.

and so potential inaccuracies happen at the middle sample
rate. In Figure 9, the inaccuracies are at the highest sample
rate. On the other hand, the § parameter coefficients get more
accurate as the sample frequency gets higher relative to the
feature. Thus, there are only minor inaccuracies in Figure
8, but pushing the filter features up by a decade in Figure
11 results in more significant distortions for the two lower
sample rates. In either example, Figures 7 and 10 show that
the A coefficients maintain their accuracy.

V. CONCLUSIONS

This paper has compared the common ¢§ parameterization
of biquad filters with conventional and A coefficients for
biquads. For numerical accuracy, the results of Section IV,
confirm the reasoning that the biquads using & parameters
have better fixed point coefficient accuracy than conventional
coefficients although they are not as accurate as the A
coefficients. The § parameter based coefficients also took
more bits to represent, unless we used a shifted version.

There are still issues related to using the § parameteri-
zation that are not present with A coefficients. Each delay
step, 2~1, in the filter block has to be replaced with an
integrator block, 61, which means maintaining integrators

in fixed point inside the filters. They may have their own
numerical growth issues. Furthermore, while the shifted §
parameter biquad coefficients can be made to fit in the
smaller number format, much of the physical intuition about
the coefficients (and the signals) that was gained by using
the § parameterization is lost. On the other hand, the A
coefficients correspond to discrete time quantities, which
inherently have less physical intuition. However, the fact that
they are local to a biquad means that we can get a reasonable
idea of what the signals mean on a biquad by biquad basis.
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