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A Comparison of A Coefficients and the 0 Parameterization, Part II:
Signal Growth

Daniel Y. Abramovitch*

Abstract— The multinotch was introduced in [1] as a way
to parameterize digital filters so as to preserve numerical
fidelity of the filter while providing precalculation to reduce
computational latency. Still, as the sample rate got large relative
to the frequencies being filtered, the biquad coefficients in
the multinotch got sensitive. A coefficient adjustment called
A coefficients introduced in [2] worked extremely well on
coefficient sensitivity, but did not address potential signal
overflow problems. The § parameterization [3], [4] is another
method of adjusting digital filter coefficients to compensate for
relatively high sample rates. A comparison of the two was made
in [5]. The 0 operator also is reputed to have the advantage of
generating a differential form of the filter [6]. This paper will
examine that, in the context of signal growth. Finally, we will
propose an alternative, differential form of the biquad cascade
and examine that.

I. INTRODUCTION

Fig. 1. Discrete biquad cascade, with factored out b; o terms and scaling
the output of each block.

Implementation of control systems often involves realizing
the controller in the form of either a state space realization
or a filter. Increasingly, the implementation is done digitally,
which means discretizing the filter or state space realization.
For the biquad cascade forms introduced earlier by the author
(Fig. 1) we will restrict ourselves to the filter realization [1],
[2], but will keep in mind that these can be mapped to state
space forms [7], [8], as with more standard forms [9]. As
has been noted in the work leading to § parameterization [3],
[4], [6], [10], [11], [12], the combination of relatively high
sample rates and finite computational word length can cause
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problems, both in coefficient accuracy and signal growth in
the filter.

Consider a controller design in the form of a continuous
time filter,

o bO,csn + bl,(:5n71 + -+ bn—l,(:s + bn,c
S a1 s 1,65+ e

which has to be discretized for implementation on a real-time
computer A function of z~!

- bo + blz_l + -4 bn_12’_n+1 + bp,z7"
T l4az 4 Han, 2" a2
allows us to express the output directly as a combination of
past outputs and inputs:

ulk) = —auk—1)+ - —ap_u(k—n+1)
—apu(k —n) +boe(k) + bie(k — 1)+ ()
oot by_re(k—n+ 1)+ bye(k —n).

This is all well known. It is also the case that for “high-
Q” dynamics, such as those found in mechatronic systems,
that is those characterized by one or more resonances or
anti-resonances (notches) with very low damping ratios (and
therefore high filter quality factors or Q’s), such digital
representations often fall short, particularly with multiple
features (resonances/anti-resonances) spread across a wide
frequency range and a sample frequency that is several orders
of magnitude higher than some of the features. While we are
discussing the controller and not the system model here, it is
understood that the controller will have to equalize some of
those system features if we are to achieve high bandwidth
[1], [2], [13]. Another way to think of it is to consider a
state-space realization of the controller, which will include
an estimator to model the system dynamics. That estimator
has to hold a representation of those high-Q dynamics.

Furthermore, the work of [3], [4], [6] made obvious the
issue that as the sample frequency goes up relative to the
feature being controlled, the poles/zeros of the compensator
approach the point z = 1. What this means is that the
coefficients of (2) — (3) do not change much even when
the physical parameters that they are supposed to represent
change a lot. Put another way, a difference of several hundred
Hertz in resonance frequency of the physical system may be
represented by a few bits worth of variation of the filter
parameters.

This has been addressed by the use of the § parameteri-
zation, which remaps the digital filter (and presumably the
coefficients) into a “differential” form by mapping:
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Fig. 2. Block diagram for implementing §~1 block in a filter. On the left
is a traditional view of the forward rule integrator, but for understanding
the block interactions, the right view may be more clear.

where A is often the sample period, T’s. For the rest of this
paper, and to avoid confusion with A coefficients, we will set
A =Tg in (4) and all other uses of the § parameterization.
As this is the form of the familiar Forward Rectangular
Rule integration discrete equivalent [9], we know that one
of the effects is to map the inside of the unit circle back
towards a line so that at very small Tg, 6 — s. The §
parameterization starts with coefficients that are already from
the discrete form. As noise considerations generally make
it more prudent to integrate rather than differentiate when
possible, the § parameterization is implemented using J~*
form shown in Fig. 2:

51— Ts _ T52,’71 .
z—1 1-—271
Three things to note here:

o This block is a Forward-Rectangular Rule discrete inte-
grator [9], which only produces reasonable results when
T is small compared to the dynamics being integrated.
The 6! blocks maintain their own state, and as digital
integrators, one has to be aware of the number of bits
needed to prevent overflow.

o Signals going into the 6~! blocks are assumed to be
“differential” (as 6 — s) and so there is a sense that
they are generally smaller at low frequency and larger
at high frequency. Much of this effect may simply be
that the integrator input gain in (5) is scaled by Ts so
as the step size goes down, so does the integrator gain,
which keeps the internal signals bounded.

e As was pointed out in [5], the § parameters require
more bits to represent even modest frequencies. A 1 kHz
resonance or anti-resonance will require at least 26 bits
while a 2 kHz resonance or anti-resonance will require
at least 28 bits. Thus, the larger word size requirement
has been moved from the signal to the coefficients.

(&)

The multinotch puts (2) — (3) into a cascade of biquads
[1], [2] (1) to exploit the improved numerical properties of
having discrete coefficients of second order sections where
those sections are selected so that the pole-zero pairs are
as close as possible to each other. This creates a situation
where at frequencies far from the pole-zero pair, their effect
on the rest of the system response is negligible, while close
to the frequency of the pole-zero pair, the numerator and
denominator tend to neutralize each other and limit the
signal growth. The original multinotch showed significantly
improved fidelity of the fixed point filter coefficients of
higher order filters, while the A coefficients [2] made the
coefficients close to floating point in fidelity, even when the
sampling frequency, fs = 1/Tg, was significantly higher
than the filter frequencies. The A coefficients were inspired

by the same observation that inspired the § parameterization,
of the poles and zeros of the filter/controller all pressing
towards z = 1 as the sampling frequency got significantly
higher than the dynamics in question.

It perhaps is not surprising then, that there was some con-
fusion between A coefficients and the ¢ parameterization in
early reviews of [2]. The tradeoffs between the A coefficients
and the § parameterization were analyzed with respect to
coefficient accuracy in [5]. In this paper we discuss the issue
of signal growth, in particular, how large the internal and
external signals of a digital biquad get when parameterized
with step form (z~!) coefficients versus when parameterized
by so-called differential form (5~!) coefficients. As in [5],
we will find that we can gain the understanding we need
from a single biquad or a cascade of two biquads. It is
worth noting that since the A coefficients merely split the
computation of the filter coefficients and internal signals into
more accurate pieces, recombining them at the addition part
of the “multiply and add”, they do not affect signal growth
much and the analysis can be done with normal step form
coefficients. We can examine signal growth issues even in
floating point, although not issues of fixed point accuracy of
the calculation. Still, the rest of this paper will be in floating
point since it demonstrates what we are trying to show.

The rest of this paper will proceed as follows. In Section II
we will review biquads, A coefficients, and the § parameter-
ization. Section III will analyze the reasons for signal growth
in biquads with high sample rates relative to their dynamics.
Section IV will propose an alternative true differential form
that can be introduced into the multinotch to truly limit the
growth with minimal negative consequences. Finally, Section
V will provide the methodology used to compare the signal
growth in these filters.

Block diagrams in this paper use the same “mixed-
metaphor” combinations of time and frequency notation used
in [9], [14], and [15]. z~! blocks have signals with time shift
notation going in and out of them, e.g. z, z(k). In difference
equations the z~! becomes the unit delay operator, similar
to ¢g—', but we still recognize the that we can also get a
frequency response from the structure with z~!. Although,
inexact, this usage is common and well understood.

II. DIGITAL BIQUADS: NORMAL, A COEFFICIENT, AND §

PARAMETERIZATION
i Center frequency of numerator (Hz)
WN,i Center frequency of numerator (rad/s)
QN,i Quality factor of numerator
(N = Qzlv ; Damping factor of numerator
ID,i Center frequency of denominator (Hz)
wp.i Center frequency of denominator (rad/s)
Qp.i Quality factor of denominator
(p,i= Q}D ; Damping factor of denominator

TABLE I
PHYSICAL COEFFICIENTS USED TO SPECIFY A BIQUAD SECTION.
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Fig. 3. A digital biquad filter with the bg term factored out.
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Fig. 4. A digital biquad with A coefficients.

This section will review digital biquad structures and
implementation in the so called “step form” (z~!) and the so
called differential form (§~'). A more in-depth discussion
is found in [5]. For signal growth, it is fairly clear that the
use of A coefficients has little effect. Comparing the standard
biquad coefficient form in Fig. 3 with the A coefficient form
of Fig. 4, we see that the true difference is in the structuring
of the filter multiplies, but the signals are recombined at any
node or state junction and so are equivalent. Thus, we can
ignore the A coefficients in this section, but concentrate on
the z~! form versus §—! form biquads.

We will assume that we have factored out b; o from the
numerator in both forms, and will restrict the discussion to
resonance/anti-resonance pairs, since they are most illustra-
tive of the issues we are trying to examine. Setting n = 2
in (2), we get a biquad. In [1], [2] the filter was designed
using the analog specification parameters of Table I and
then digitized using pole-zero matching [9]. The biquad form
means that there are no excess zeros to consider.

_ 1+Bi 1Zﬁl+l~7i 9272
Bi(z™Y) =b; ’ : : 6
=) 0 (1 + a1z +aj 0272 ©

Equation (6) will be our base from which we will derive
coefficients.

As discussed in [1], [2], [5], [7], the individual biquad
coefficients are calculated as follows. For a; o, Ei,g, and Ts =

L we have
fs

Qg = e 2wp,iTsCp,i apd bio = e 2wN,iTsCNi (7)

Whether the poles (or zeros) are a complex pair depends
upon [¢p ;| (|¢n:]). For |{p ;| < 1 we have a complex pair
of poles and so

a1 = —2¢wp.iTsCD.i ¢og (wD,iTS, /1 — C%,i) . (8)

If |(n,s| < 1 we have a complex pair of zeros and so

Bi,l — —9¢=wN,iTs(Ni g (QJNJTSW /1 — C]2V,z) . )

Conversion formulas for non-resonant numerators and de-
nominators are provided in [1], [2], [5]. The entire conversion
routine, which turns the physical parameters of Table I into
discrete filter coefficients can be implemented in a short
Matlab, Octave, or Python function. These coefficients can
be thought of as the “normal” biquad coefficients.

e(k) i.o(K) u(k)

Fig. 5. A digital biquad reparameterized with the J parameterization.

The § parameterization coefficient calculation for a struc-
ture such as the one in Figure 5 is summarized in [5]. If we
evaluate (6) as a function of § as defined in (4), and proceed
directly to the 5! form, we get

_ 1+ Bia67t + B2 2
B. 1y _p. ) » 1
Z((S ) bZ}O (1 + Oéi71571 + 041‘72572 ’ ( O)

where
ai1 +2 L+ain+aip
i == - , i = _— 9 11
i Ty M2 T2 (v
big +2 1+bi1+bio
4 = = R d i = — = (12
Bi Ts and f3; o T2 (12)

As noted earlier, as T's — 0, a;,1 and Bi,l — —2 while a; 2
and BLQ — 1, so that «; j and 3; ; are both fractions where
numerator and denominator approach 0 [4].

Equations (6) and (10) are defining two different forms
of the same filter, and so we can verify that from an input-
output perspective

Bi(="Y) = Bi(5Y), so
14bigz ! + b 0272 14 B0 4 B 002
1+ ai712’71 —+ ai72272 - 1+ Oél',l(;*l + Oél'_’2($72 '
As the {a;;} coefficients are solely defined in terms of
the {a, ;} coefficients and the {f; ;} coefficients are solely

defined in terms of the {51 j} coefficients, we can equate the
left and right numerators and the left and right denominators,

c.g.
1 + (Li71271 + ai,2272 =1 + ai,1671 + 0%12572‘

13)

(14)

15)

This is a somewhat circular argument since (10) — (12) were
derived by applying (5) to (6), but it makes the point that
we have only changed the internal structure of the numerator
and denominator terms with the § parameterization. The crux
of the idea that the ¢ parameterized biquad will limit internal
signal growth is based on the idea that this rearrangement
has transformed the biquad from a step form to a differential
form, where only the difference in the internal signals. It is
more relevant to remember that the scaling provided by the
shrinking T's in the digital biquad coefficients get moved to
the input of the §~! integrator. This will be discussed in
Section III.
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III. INTERNAL AND EXTERNAL SIGNAL GROWTH

The issue of potential signal growth in biquad sections
occurs when the sample rate of the digital system is sig-
nificantly higher than the natural frequencies of the biquad
resonance and anti-resonance. When the sample rate is
relatively high, then there are a lot of sample steps per
period of the oscillation frequency (which corresponds to
the biquad denominator resonant frequency). If we consider
a biquad with unity DC gain and resonance and anti-resonant
modes relatively close together, then from an input-output
perspective, there are three regions:

o Well below filter dynamics: The signal “looks like
DC” to both the numerator and denominator. The signal
moves far more slowly than the filter responds, so
the numerator and denominators essentially “damp out”
much faster than the signal.

o Well above filter dynamics: The signal oscillates
much faster than the filter can responds and so the re-
sponse of the numerator and denominator are minimal.

o Near the filter dynamics: The filter is strongly
responding to the signal. This is the region in which
the most internal signal growth is expected. Even if
the resonance/anti-resonance pair are close together
(resulting in reduced input-output growth) the internal
states could have significant growth there.

One measure of potential internal signal growth is how
much a signal at the denominator natural frequency (fp ;)
grows. If we inject a signal at fp ;, it will essentially behave
like an integrator over the half period of the denominator
frequency before the oscillation turns around. Thus, one
bound on signal growth inside the biquad is to ask how many
steps there are in the half period of that input signal. For a
signal of frequency fy with a period Tj there are

Ty 7 J%S
Steps in? = Nytep = 75 = 70 (16)

By this simple relation, the relative increase in the sample
rate versus the denominator frequency results in significant
increase in the number of values that might be added up.
For relatively high sample rates, the denominator of a step
biquad approaches a double integrator [2] and so we can
approximate:

di —ai1di -1 — Qi 2dip—2 + Uik

N 17
~ 2 -1+ dig—2 + Uik a7

If we start the half interval at £ = 0 and assume a constant
u; ;, = 1 on the half interval (say for a square wave), then a
few steps reveal that:

k+1

k
d,‘7k = k‘ui,o—k(k—1)ui,1—|—...—|—1ui,k = . (18)

This is an upper bound on the growth over a half interval.
Thus, for a filter with a resonance at 100 Hz and a 10
kHz sample rate, Ny, = 50, which means that on the
half interval, an upper bound of the growth would be G =
25(51) = 1275 which requires an extra log2(1275) =
10.3163 or 11 bits of head space. For a 100 kHz sample

rate, G = 250(501) = 125,250 ~ 12.5e5, which requires
log2(125250) = 16.9345 or 17 bits. Finally a 1 MHz
sample rate makes Ny, = 5000 and G = 2500(5001) =
12,502,500 ~ 12.5e6, which requires an extra 24 bits of
head room.

Why does this matter? A typical fixed point, high speed
math block, such as a Xilinx DSP48E [16], [17] can compute
25 bit x 18 bit multiplies in 5 fabric clock cycles. These
math blocks have 48 bit output registers, so there are only
5 bits of headroom. In two’s complement math, an overflow
rolls over erroneously and so we go from the maximally
high value to the maximally low value (or vice-versa) which
is unacceptable for control or signal processing applications.
This means that the operation outputs must be pre-saturated
to avoid this error, but a saturated value in a linear filter
means that the filter is no longer linear and at best, is no
longer filtering as it should. Following this stream of logic,
one would have to provide either extra wide operators (using
a combination of 2 or more DSP48Es) or move to floating
point operations (using a combination of 2-4 DSP48Es,
depending upon the signal width)[18]. However, the move
to floating point essentially doubles the computational delay
and means that we need to convert the signals in our block
to floating point. We might do this for the entire filter, but
for very high speed applications such as high speed control
of an atomic force microscope (AFM) [19], this could be
the limit. On the other hand, high speed applications with
only high speed filters in them, such as AFM demodulation
[20], [21] would not run into these headroom problems. The
belief that the 0 parameterization is that it implements a
differential form of the biquad, gives rise to the idea that
this will limit such problems, without the 50% speed cost of
going to floating point operations. However, the fact that we
implement ¢ filters in the integral form, as a function of § -1
should give us pause.

IV. DIFFERENTIAL FORM MULTINOTCH

The previous section results show that neither the normal
form nor the ¢ parameter form truly implement a differential
filter. At the heart of this is that we implement either a filter
in terms of unit delay, 2~L or the § integrator, § -1 and
neither of these is differential. However, the biquad structure
gives us ample opportunity to do this

Fig. 6. A biquad in incremental/differential form.

For any individual biquad with the b; ¢ term factored out
of the denominator, the defining equations are:

diy = —aiadig—1— aiod; o+ Ui, (19)
Uik = dig+bii1d;p—1+biad;r_o, (20)
Up = Yi—1pfori<n, & (21)
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(22)

Up = Uk, Yk = Un,k-

where indexing of biquads starts at 1 and N is the number
of biquads. To generate a differential form, we calculate:

dij —dig—1 = —ai1 {di,kq - di,k72}

—a;2 {di¢k72 — di,kff}} + (@i — Qig—1]. (23)

Defining ¢; ,, = cflk — cii’k,l, this cleans up to:

ik = —A;i 1€ k—1 — ;26 k—2 + Uik — Uik—1] (24)
We can put this into transfer function form via:
E;(2) (1 +ai127t + ai,22_2) = (1 — z_l) Ui(z). (25)

Similarly,
Mg = Yik — Yih—1 = [Ji,k - (Zi,kq} +

51,1 [Ji,k—l - Ji,k’—2] + 572 {di,k—2 - di,k—?)} (26)
Yi(z) (1—271) = (1 + bz + Bi,gz*) E;(2). (27)

We have essentially applied (1 — zfl) to the numerator
and denominator of our biquad, which changes nothing in
a linear, noise free world.

Yi(z) (1 - 2_1) E;(2) (1 + Ei,lzfl + Bi,2272)

7 = 28
T (-1 E@ (0t tam—2) &

However, as we can see in Fig. 6, we can separate out those
(1 —z71) blocks to differentiate on the input of the filter
and integrate on the output. This means that the signals going
into our filter will be differential, dramatically reducing the
internal signal growth of the low frequency signals in the
biquad. On the output of the biquad, the signals are integrated
to restore their previous form.

Fig. 7. Discrete biquad cascade, in incremental form.

Fig. 8.

Separating differential biquads from step biquads.

We can make a single biquad use differential signals or
we can keep it using step signals. Furthermore, we can string

together groups of biquad blocks, working on differential
signals with one differentiator at the start and one at the end,
as shown in Fig. 7, while other sections remain in step form.
The independent block structure of the multinotch allows us
to break the problem up this way. The simple, logical next
step is to section off the biquads that need differential signals
from those that do better with normal signals, as diagrammed
in Fig. 8.

When is the differential form beneficial? Returning to our
previous discussions in Section III, it would seem to help
when we have a biquad with low frequency dynamics and
a relatively high sample rate. The signals above the biquad
dynamics will be differenced, pass through the biquad largely
unchanged, and be integrated back to their original form. We
are trading off the possibility of loosing some signal due to
the finite word length effects on the differencing/integration
operations, but that is a design tradeoff compared to having
signals saturate inside the filter.

V. COMPARING SIGNAL GROWTH: METHODOLOGY &
RESULTS

To examine the signal growth of the z~! versus §—!

biquads, we will choose a pair of analog biquads and
translate them into discrete form. We will simulate these in
normal biquad form and and with the ¢ parameterization and
inject sine waves at the resonant frequency of the biquad.
Of the two biquads, one will have center frequencies several
orders of magnitude below the sample frequency and one
will be much closer. These should make obvious if the
relative sample rates affect signal growth in either normal
or § parameterizations.

Example 1
Biquad # fN,n (HZ) Qn fN,d (HZ) Qd
1 100 40 100 40
Example 2
Biquad # | fn.,, Hz) | Qn | fnag (Hz) | Qg
2 1000 40 1000 40
TABLE I

ANALOG BIQUAD PARAMETERS FOR TWO SINGLE BIQUAD EXAMPLES.

The plots of Figures 9 — 10 are from Example 1 in Table
II. This is a notch filter with numerator and denominator hav-
ing resonant frequencies at 100 Hz. The Q of the numerator
is 10x that of the denominator, making it a notch. Figures
11 — 12 correspond to the same notch, but moved to 1000
Hz. The input frequencies are set to the notch denominator
frequency and the sample rates are at 10 kHz, 100 kHz, and
1 MHz. These all meet Nyquist requirements, but illustrate
the effects of sample rate on internal growth.

The top half of Fig. 9 shows the 100 Hz input into the
biquad at the 3 sample rates, as well as the differential inputs.
This simply confirms that while the input shape is the same,
the differenced input is phase shifted and gets smaller as
the sample rate goes up. The bottom of Fig. 9 shows the
output of the biquad, and we see that it is consistent across
sample rates. The internal signals are — as predicted —
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Input and Differential Input Signals: f, = 100 Hz
—— Input, fg = 10 kHz

~ =~ Input, f =100 kHz

~ -~ Input, ;=1 MHz i /
L L
X 0.0

_o5}| —— Diff Input, £ = 10 kHz
—— Diff. Input, f; = 100 kHz
——— Diff. Input, f; = 1 MHz
L
0.06 .07 o0 09 01

0 001 0.02 003 0.04 005
Time (s)

Input
—
/
T

Output Signals: f,_ =100 Hz

1 T T T T T T T T T

Output

- - -Step, 5", & Diff. Step BQ Output, f; = 10 kiz
- - —Step, 5, & Diff. Step BQ Output, f; = 100 kiz

~ - - Step,5”', & Diff. Step BQ Output, f; = 1 MHz

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (s)
Fig. 9. Top: Inputs and differential inputs with different sample rates.

fin = fp = 100 Hz. Bottom: Outputs of different biquad implementations
with different sample rates.

107 State: f =100 Hz, Q =40, f, =100 Hz, & Q= 4
X

AAAAAAAAA
s i RVIRVANVIRY v J \/ \

———d(K), fg = 1 MHz
57" State: f, =100 Hz, Q =40, 1, = 100 Hz, & O = 4

5 T T T T T T T T T

NAWA |

—— 57K, fg=10kHz
——&7(), fg = 100 kHz
—— (0, fg =1 MHz

0 0.01 0.02 0.4 03 0.4 04 0.4 05 0. 05
Time (s)

5 ! ! ! ! ! ! !
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (s)
10t State (diff. inputs): 'N 100 Hz, Q =40, f,=100Hz, & Q, =4

T QQQ QAQ QQ
N == VYV

(K, fg = 1 MHz

! ! ! ! ! ! !
[ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (s)
Fig. 10. Internal state of biquad. f;,, = fp = 100 Hz. Top: step biquad.

Center: 5! biquad. Bottom: step biquad with differential inputs.

quite different. For the step biquad with the normal input
in the top third of Fig. 10 shows the extreme growth of the
internal state as the difference between the sample rate and
the oscillation frequency goes up. The growth is on the order
of the predictions of Section III. The § biquad state of the
middle of Fig. 10 is insensitive to the change in fg because
of the scaling of Ts on the 6! integrator blocks. Finally,
the step biquad with differential input results of the lower
third of Fig. 10 show that much of the growth effect at low
frequency can be removed by differencing the input for low
frequency biquads and integrating the output.

The experiment is repeated with the higher frequency
biquad Example 2. The top of Fig. 11 shows the 1000 Hz

Input and Differential Input Signals: f, = 1kHz

Input, Tg = 10 kHz
- - — Input, f = 100 kHz

~ — ~Input, f =1 MHz
— Diff. Input, f = 10 kHz
—— Diff. Input, f, = 100 kHz
——— Diff. Input, fg = 1 MHz

Input
o

-05

0 0.001 0.002 0.003 0.004 005 0w ) 0.009 001
Time (s)

Output Signals: f =1 kHz

Output

- - —Step, 5", & Diff. Step BQ Output, fg=10kHz
— - —Step, 5, & Diff. Step BQ Output, fg =100 kHz
~ - ~Step, 5, & Diff. Step BQ Output, f; = 1 MHz

! ! ! ! !
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time (s)
Fig. 11. Top: Inputs and differential inputs with different sample rates.

fin = fp = 1000 Hz. Bottom: Outputs of different biquad implementations
with different sample rates.

5 State: fy =1kHz, Q) =40,f,=1kHz, &Q; =4

1 AAAAAAAAﬂ

=
T
-05 d(k) To= 10 kHz
M. 'S - 100 kHz
—d(k), fg = 1 MHz
-1
[ 0.001 0.002 0.4 003 0. 004 0. 005 0. 006 0.4 007 0. OOB 0. 009 0.01
Time ()
-1 - f = = = =
& State: 'N =1kHz, ON =40, 'D_ 1kHz, & QD =4
=
§ o\ /\ /\ 1

—_—K), fg =10 kHz
—— 57, fg = 100 kHz|
—— 570, fg =1 MHz

. . . . . . .
[ 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (5)

State (diff. inputs): 'N 1kHz, Q =40, , =1kHz, & Q; =4

AAQQQQQQQ
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(k) fg = 1 MHz

L L L L L L L
0 0.001 0002 0003 0004 0005 0006 0007 0008  0.009 0.01
Time (s)

ddf(k)

Fig. 12. Internal state of biquad. f;,, = fp = 1000 Hz. Top: step biquad.
Center: 5~ biquad. Bottom: step biquad with differential inputs.

input into the biquad at the 3 sample rates, as well as the
differential inputs. With the sample frequencies 10x closer to
the dynamics, the difference between the differential inputs
gets smaller. Again, the outputs of the biquad are consistent
(bottom of Fig. 11). The difference in the internal signals
for the step biquad (Top third of Fig. 12, is smaller. Again,
the growth is on the order of the predictions of Section III.
The § biquad state of the middle of Fig. 12 is insensitive
to the change in fg but at the lowest sample rate, which is
only 10x the resonance and input frequency, we see some
inaccuracy creeping into the internal state. Finally, the step
biquad with differential input results of the bottom of Fig.
12 has far more reasonable signal growth numbers.
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fin 100 Hz
s (kHz) 10 100 1000
Ugifro | 006279 | 0.00628 | 0.00063
do_i 1e+003 | 1e+005 1e+007
5ok 4.03 4 4
ddfo,k 641 637 6.36e+003
f’Ln 1 kHz
s (kHz) 10 100 1000
Ugiff,0 | 061803 | 006279 | 0.00628
do_i 123 | 1.02e+003 | 1.01e+005
5ok 47 4.03 4
ddfo,k 7.6 64.1 637
TABLE III

SIGNAL SCALING IN DIFFERENT BIQUADS, RELATIVE TO THE INPUT.

Note that these results are in floating point. In a fixed point
system, one would have to limit the size of the signals. This
pre-saturation is known as clipping in the analog signal world
and while it distorts the output signal of an analog filter, in
feedback it means that the filter is not removing the signals,
not compensating for the dynamics, that it was supposed to
handle. We come back to the tradeoff of moving to floating
point, which would halve the computation speed and likely
quadruple the resources needed for the calculation. In many
contexts, this would be a worthwhile tradeoff. For extremely
high speed signals, it is unacceptable.

The simulation results with respect to signal growth are
summarized in Table III. We can see that the true advantage
of the § parameterization with respect to signal growth occurs
when the biquad dynamics are substantially below the sample
rate. We can see this advantage breaking down in the middle
of Fig. 12, when the sample rate is only 10x that of the
denominator center frequency. For relatively low sample
rates, e.g. 10x that of the filter dynamics, the combination
of coefficient accuracy with a low number of bits and low
signal growth tends to point to step form biquads. In these
cases, the coefficient size of the § parameter biquads and
the inaccuracy of the forward rule integration would be a
detriment.

A great advantage of a biquad cascade such as the
multinotch is that different biquads can be handled dif-
ferently. For fixed point computations, the high frequency
biquads could be handled with step biquads (with or without
A coefficients). At the extremely low frequency biquads
would be handled with a § parameter biquad. Finally, those
in the middle frequencies might be well managed with step
forms and differential inputs. If one incurs the cost of shift to
floating point calculations, then most of the signal sensitivity
benefits are already encompassed in the biquad cascade.

VI. CONCLUSIONS

This paper has compared the common ¢§ parameterization
of biquad filters with conventional step biquads and a pro-
posed differential biquad. The results of Section V, show that
the § parameterization does limit signal growth compared to
step forms. This is very specific to the biquad dynamics being
several orders of magnitude below the sample frequency.

In the middle is the newly proposed step biquads with
differential inputs that allow the use of the more numerically
accurate A coefficients in fixed point while limiting the
growth when the span between the sample frequency and
biquad dynamics becomes large.
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