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Abstract—In several common measurement modes of mass
spectrometry systems, the measurements produced are an
ordered pair of abundance (an amplitude) versus mass to charge
ratio (m/z). This mass spectrum can be viewed as delta functions
comprising actual abundance of the ions with that m/z value
convolved with a a smearing function due to the measurement
process. Peak detection refers to the method of extracting
estimates of these precise delta functions (mass locations)
and amplitudes from this smeared response. Current peak
detection and centroiding in mass spectrometry is particularly
susceptible to errors when there is significant overlap between
peaks. This paper explains the issues with current methods
and presents a set of algorithms inspired by curve fitting and
system ID methods in control [1] that dramatically reduce these
issues. The algorithms are computationally simple, suitable
for implementation in the embedded system of an analytical
instrument, and produce dramatically improved results in the
peak center estimates, particularly when there is significant
peak overlap in the measured peak spectrum.

I. INTRODUCTION
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Fig. 1. A basic diagram of a quadrupole mass spectrometer.
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Fig. 2. A simple diagram of a mass scan or profile. The sweep of the mass
spectrometer produces a map of ion intensity (abundance) versus mass-to-
charge ratio (m/z). Ideally, the abundance bumps would be scaled Kronecker
delta functions at a particular m/z value, but the convolution of these deltas
with the measurement/instrument process3 produces a smoothed bump. We
would like to localize these, or find the centroid.

A mass spectrometer is an analytical instrument used
by scientists to characterize unknown chemical compounds
and/or to quantify and qualify known compounds. While
there are many variants of this particular idea, there are
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two broad classes of mass spectrometers: those that rely
on the “time-of-flight” of an ion (TOF, where for a given
electromagnetic impulse, lighter ions arrive at the detector
earlier than larger, heavier ones) and those that rely on some
sort of electromagnetic “mass filter” to pass ions that have
a particular mass-to-charge ratio [2], [3]. In the latter group,
there are various types of mass filters, including ion traps
and quadrupoles. The latter group is analogous to electronic
spectrum analyzers [4], while the former generally captures
data in the same way as a real-time digital oscilloscope [5].
The diagram of Figure 1 shows a tandem or triple quad
mass spectrometer, which has two quadrupole mass filters
sandwiching a collision cell. The collision cell was originally
implemented using quadrupole devices as well, but has since
been replaced by devices with 6, 8, or more rods, which
provide a better response at a lower cost. The term “triple
quad” remains from this original configuration.

The quadrupole is a device which has four parallel con-
ductive rods of alternating polarity, meaning that rods across
from each other are at the same voltage, while adjacent rods
are 180° out of phase with each other. For a given combi-
nation of DC and RF (sinusoidal) voltages at a given RF
frequency, the quadrupole produces an electric and magnetic
field in the center that allows only ions with a particular
mass-to-charge ratio range to pass through [6]. The required
DC and RF settings for each m/z range are calculated as
a stable region of the solution of the Mathieu Equation [6].
Considerable effort is devoted to the design and manufacture
of the quadrupole, as it is the key enabler of mass resolution
(analogous to frequency resolution in a spectrum analyzer)
[4].

Compounds are initially separated in a variety of methods,
such as liquid (LC) or gas (GC) chromatography. The output
of these instruments is fed into the source of the mass
spectrometer. lons are generated in the source and the ion
beam is compressed as it enters into the ion optics path and
sent to the first quad. Various electromagnetic filters are used
along the ion optics path to control the effects of fringing
fields that can adversely affect the measurement.

From the first quad the ions enter the collision cell, an
RF device which holds an inert gas. The ions that make it
through the first quadrupole (quad) impact the gas molecules
in the collision cell and fragment. The product ions are then
filtered by the second quad before arriving at the detector.
The detector is a device such as an electron multiplier tube,
that produces a cascade of electron emissions for each ion
impact, amplifying the signal so that the resulting output can
be sampled and digitized. This digitized signal is a measure
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of the number of ions at that mass-to-charge ratio (m/z).

By knowing the m/z settings for each quad — in Atomic
Mass Units (AMU) or equivalently Daltons (Da) — as well as
the collision energy, a map of source and product ions can
be formed. Analytical chemistry then allows the scientist to
back out the probable fracture points of different candidate
molecules and divine the original input to the instrument. In
this mode, it is a true compound identification system.

In mass spectrometers, the measured abundance data is
registered against mass to charge ratios (m/z). The measured
curve is typically considered to be the result of smearing
of true m/z delta functions convolved with the physical and
electronic response of the instrument (Figure 2). Identifying
m/z lines is a significant part of identifying compounds. One
of the main issues in complex mixtures is identifying lines
when peaks significantly overlap each other. Even if an apex
can be found, the width estimates needed for proper centroid
calculations are often wrong. The algorithms described here
are designed to address these issues.
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Fig. 3. Simple detection of well separated peaks. The blue dots are the
sample points along the mass axis, while the dashed cyan line is the inferred
abundance curve. The peaks are initially detected by searching for local
maxima and their widths are then characterized, typically by searching for
the full-width, half-max (FWHM) points.

There has been a fair amount of work on different peak
finding methods. A nice comparison of them is found in
[7], [8]. Some more advanced methods are discussed in [9].
Most of them involve finding some local maxima relative
to surrounding points, and then qualifying those maxima,
either with a threshold or through some peak curve shape
requirements. Alternately, the slope of the abundance curve
can be checked for negative zero crossings, indicating a local
maxima [8]. In a well-tuned system, with isolated peaks
(Figure 3), this can be accomplished fairly simply. Of course,
as differentiation amplifies noise such methods are often
combined with filtering. Another piece of pre-processing
that gets significant attention in the literature is baseline
correction, particularly in cases where the baseline is not
a constant, but instead can be modeled as a smooth curve
with some low order polynomial.

Simple peak detection involves searching for the local
maxima or apexes of the abundance curve, labeling those
above some minimal peak threshold, then determining the
peak width, and center (via a centroid or other method). A
very simple algorithm can be described as follows. Consider
a set of N ordered pairs of data, {(m;, a;)} in Figure 3 where
m; is the mass to charge ratio (m/z) at index, ¢, and a; is the

measured/detected ion level or abundance. We assume that
the m; values are monotonic in ¢, but this can be rising or
falling. In a 3-point search a peak is detected if

ai—1 < a; and a; > i1, (1)

for 0 <i < N —1 and if a; > peak threshold. In a 5-point
search a peak is detected if

ai—o < aj—1 < a; and a; > @11 > aiq2, 2

for 1 < i < N — 2 and if and if a; > peak threshold.
Clearly, the 3-point search will allow more potential peaks
than the 5-point search, but in the presence of measurement
uncertainty, the latter is more likely to have matched a real
peak and not a noise artifact. We can also look for 3-point
peaks and further qualify them as 5-point or higher peaks.
We are looking for an apex the response (abundance) data in
a computationally simple way (i.e. a way that can be readily
implemented in an embedded system).

Because such simple searches are subject to noise and
other measurement artifacts, it is reasonable to want to
qualify the candidate peaks further. This is often done by
searching for the width of the peak and using this to help
calculate a centroid of the peak. As this centroid would gen-
erally involve more measurement points, one might consider
it to add some noise immunity.

There are many possible ways of evaluating width, but
a fairly common one is to search down the curve for the
full width at half max (FWHM) [10], where the width is
assumed to be the width where the curve reaches half of
the maximum peak value. Simply put, for any identified
peak apex, a;, we search downhill on either side until we
reach the points (m;,a;),j < i and (my,ax), k > i where
the measured values, a;,a; < a;/2. The FWHM is then
|mj —my|. Since we are operating at discrete measurement
points, some straightforward refinement can be achieved by
interpolating the m,;, m;, values back towards the actual point
where the abundance equals a; /2. Further refinement may be
achieved by interpolating a smooth curve onto the top few
points of a peak and extracting an improved apex from there.
This is standard practice. What happens when one or more
peaks overlay our original one? That is, what happens when
we are searching down for our points j and k from the peak
center at index 7 and encounter another peak center at i7
before we get to our unknown j or k& points? The simple
methods above would not take that “unmodeled dynamic”
or “unmodeled feature” into account, resulting in a mis-
estimate of the peak width and potentially the peak location
and refined abundance level.

The methods in this paper are not about improving the
search method specifically, but about being more careful
with the classification methods. In other words, we sanity
check the model and when we see that our underlying model
assumptions are violated, we modify that model. It turns
out that by segmenting the search, the verification steps can
be made simple enough to not dramatically increase the
computational cost.
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Fig. 4. Peaks that are too close to each other can interfere with detection
methods.

When peaks are close together, as can happen with com-
plex, unknown compounds, the underlying peaks may create
distributions that interfere with each other. Two examples
of this are sketched in Figure 4. On the left we see two
overlapping peaks where one can find separate local maxima,
but the calculation of the widths - based on a search of
the abundance curve for the half-max point - are incorrect.
As peak widths are used to calculate the centroid of the
peak, which has more noise immunity than the apex point in
determining the center of the peak, an erroneous width can
result in poor mass assignment. On the right, the peaks are
close enough together that there is no second apex and thus
the second peak is not detected.

There has been much work on measuring and correcting
for biases, for filtering out noise, for removing outliers, for
modeling individual peak shapes, and for comparing libraries
of known peaks to measured curves [8]. However, there has
been little discussion on the problems shown in Figure 4,
especially when discussing a full mass axis with substantial
numbers of unknown potential peaks. Intuitively, the problem
can be framed as a least squares fit, e.g. LevenbergMarquardt
algorithm, of peak shapes to the abundance curve, but the
computational complexity for this goes up as the cube of
the number of candidate peaks [11]. This makes such an
approach one more suited to off-line, post-processing, rather
than for use in an on-line instrument.

We present an iterative method of successive peak identifi-
cation and removal, a “divide and conquer” approach which
results in considerable improvement in peak detection and
center/width characterization in the presence of interfering
side peaks. The methods here do not involve a substantial
increase in computational load [12], [13].

The above problem is easily identifiable to a controls en-
gineer as signal identification problem where the old method
lacked the model elements needed for a correct identification.
While the model in this case is not a dynamic system model,
but instead one of the output of a dynamic system (the mass
spectrometer), one can see that the extracted model (the
peak centers, heights, and widths) is severely affected by
the richness of the model which one assumes is producing
the underlying data. Thus, this paper does not present new
control methodologies. Instead it demonstrates how a seem-
ingly unrelated identification problem can be solved using

the mentality of a control engineer. Furthermore, the thinking
put in to minimize the computational load derives directly
from an understanding of real-time programming for control
applications.

What we will demonstrate is that by using a simple
decision process to switch between likely models, we can
dramatically improve the results in the cases of these over-
lapped peaks. These switches allow a new model, a multi-
peak cluster model, to be identified and removed using
relatively simple operations. The residual measurement curve
— left after the removal of the modeled peaks — is then
searched again for new peaks to be modeled and removed.
By segmenting the measurements into separate regions where
non-trivial abundance has been found, the search space is
reduced, making the iteration much faster, and thus more
suitable for operation on real-time data.

II. SEGMENTING THE MASS AXIS

The set of algorithms presented here follows the same
“iterative feature removal strategy” in some of the author’s
previous work [1], [14]. That is, on a measurement curve
(such as those in Figures 2 or 3), a particular feature is
localized, and fit to a low order model. That model is then
used to generate a curve over the same domain as the
measurement, and is “removed” from the measured curve.
The residual curve is then scanned for the next feature to
be modeled, fit, and removed. The process continues until
there are no more significant features in the residual curve.
The issue with this, is that if there are a significant number
of sample points, the iteration time can become huge. For
example in our mass spectrometry context, if the mass axis is
2000 AMU wide and the mass steps are at 0.2 AMU, then the
curve has 10,000 points. The saving grace is that if we can
break the mass axis up into smaller subsets and only iterate
over those small subsets, then the computational cost can be
significantly reduced. Again, the utility of taking such a step
is clear to someone with sensitivity to time delay in real-time
systems. We see how a real-time control perspective leads us
here.
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Fig. 5. Segmenting the mass axis into regions with interesting abundance

and those without.

The first step to creating an iterative method is to segment
the mass axis into alternating regions, holding interesting
and non-interesting levels of abundance, respectively. This is
diagrammed in Figure 5. We chose a threshold level above
the noise baseline. We break the mass axis into regions
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where the abundance is sustained above this threshold and
those where it is not. Clearly, the latter regions serve no
purpose in peak finding and can be ignored, but the former
regions can be treated in separate peak searches. Thus, any
sort of iterative search and removal algorithm iterates over
a much smaller region (unless the abundance is high across
the entire mass axis). In most experiments we have done,
there are significant opportunities to significantly segment
the mass axis, resulting in local search regions that have a
few hundred, rather than a few thousand points. Thus, even
though an iterative search is more computationally expensive
than a single pass, the segmentation of the mass axis greatly
reduces this effect.

III. SUCCESSIVE DOMINANT PEAK REMOVAL
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Fig. 7. Applying Successive Dominant Peak Removal to the peaks of
Figure 6.

The example diagrammed in Figure 6 shows three peaks
that overlap, but for which there is a dominant peak (the one
on the left). The center apex can be identified, but because
its FWHM point to its left is overrun by the larger left peak,
any search-based determination of the center peaks width is
flawed. The situation is worse for the far-right peak, which
is so dominated by the spread of the center peak that we
cant even see an apex.

The basic idea of Successive Dominant Peak Removal as
applied to the diagram in Figure 6 is diagrammed in Figure
7. It is similar to an approach discussed in [15]. We use a
canonical peak shape to model the largest peak in a region. A

Gaussian shape is a convenient approximation because it can
be estimated over the entire axis of a region by determining
its center point and its width. Using the apex center and
the dominant peak’s width, we estimate the height as the
difference between the peak apex and the baseline, and the
FWHM by searching the peak curve. From these, we can
calculate the j, amplitude scale , and o of a Gaussian curve.
A unit height Gaussian curve centered at 0 looks like

22
G(z) =€ 2.2,G(0) = 1. 3)
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z2 1
Glopy) =€ 2t = 2 4

that
so tha 1

X .
Va2 ™

As xgp is the distance from the center point of the peak
model to the half max point, we can average the measure-
ments from both sides, if they are available. If there is a side
peak on one side, then the measurement from the other side
can be used or averaged with the side peak width. In any
event, it is a simple calculation to compute a local Gaussian
peak model from readily measured quantities about the peak
in the residual measurement curve.

The peak model is shown on the left side of Figure 7.
Removing this peak model from the abundance curve leaves
the dashed curve on the right, which can then be searched to
locate a second peak. The removal of the previous dominant
peak has left us in a better position to estimate center
peaks width, model it with a Gaussian, and remove it. The
third pass, also on the right side of Figure 7, shows that
after removing the first two peaks, we have revealed the
previously hidden third peak. This method works extremely
well, provided that the dominant peak of any particular
iteration, is well determined or separated from any interfering
side peaks.

)

IV. ISSUES CAUSED BY INTERFERING PEAKS
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The main failure mode for Successive Dominant Peak
Removal can be seen in the diagram of Figure 8. On the left
we see that if interfering side peaks are some combination of
close enough and large enough, the search for the half-max
points of the so-called dominant peak will result in finding
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locations associated with the side peaks. However, if we have
tabulated all the apexes found in our current peak search
iteration, we already have the indices of the side peaks. We
can compare these to the mass axis indices of our half-max
searches, and if we cross another peak index on the way
to our half-max point, we declare a side peak on that side.
On the right of Figure 8, we see that once we cross those
side peaks, we switch to searching for their half-max points,
rather than those of the dominant peak. Depending upon the
number of side peaks found, the width of the center peak can
then be estimated from either a successful half-max search
on one side, or from combining the estimated widths of side
peaks. Looking at the diagram on the right of Figure 8, we
would end up with models for three closely spaced peaks.

V. SUCCESSIVE MULTI-PEAK REMOVAL

We are now in a position to describe an algorithm that
can better deal with interfering side peaks: Successive Multi-
Peak Removal. The search algorithm starts the same way
as Successive Dominant Peak Removal, but as we search
down from the center of the largest peak to find the half-
max points, we keep track of possibly crossing the indices
of other found peak apexes. In the event that we do find a side
peak before the half-max point, we model the side peak with
a second Gaussian. Thus, instead of removing a single peak
Gaussian model from the abundance curve, we might remove
up to a three-peak model. We then start a new iteration of
search and removal on the residual abundance curve. This
type of iteration might be computationally expensive, had we
not segmented the mass axis into small regions of significant
abundance content, as described in Section II. The iterations
are only done over those regions, dramatically decreasing the
computational burden.

A few heuristic steps also improve the results:

o Since the superposition of individual Gaussian models
scaled to the abundance height will not account for the
effect of overlap, we scale the combined peak model
curve so as not to be greater than the original curve.

o As side peaks may themselves have side peaks, we
allow for each side peak (left and right) to have one
more side peak of its own. The outside peak models are
used to help scale our multi-peak model, but not actu-
ally included in the multi-peak removal. This provides
a reasonable tradeoff between scaling and algorithm
complexity.

o One of the properties of our assumed Gaussian peak
model is that the magnitude of the slope is higher down
the sides that at the top, so that if we detect an decrease
in the slope magnitude before the half max point, and
there is no side peak, a hidden peak might be found.
Thus, we can detect some peaks even if their apexes
were originally hidden by the skirt of a larger peak.

VI. EXPERIMENTAL EVALUATION OF ALGORITHMS ON
LAB DATA

In this section we will present an evaluation and compar-
ison of three algorithms on laboratory data:

1) A simple apex and width search algorithm,
2) Successive Dominant Peak Removal, and
3) Successive Multi-Peak Removal.

We will display three plots of the same data: one for each
algorithm over the same data range. This will demonstrate
how each of the algorithms performs for different types of
peak shapes.

The experimental data here is taken from an Agilent Ultivo
Tandem Quad Mass Spectrometer [16]. The measured sample
was Polypropylene Glycol (PPG), with an average molecular
weight of 1000 AMU. The data had content from 10 to 1400
AMU. The data is saved in an unfiltered form and read in to
Matlab. The data then has outliers removed and is smoothed
using a Finite Impulse Response (FIR) filter to prepare it for
peak finding. We apply each of the above algorithms to the
same data set. The plot regions were chosen to emphasize
the differences in results produced by these algorithms. The
identified peaks are denoted by a black vertical line with
the peak height denoted by an open circle. The estimates of
FWHM are denoted by horizontal line segments with open
circles at each end in the middle of the curve. The base
width estimate is denoted by a similarly colored line segment
near the bottom of the curve. We will only display curves
with significant peak overlaps since this is most effective in
showing the advantages of the new algorithm.

In particular, the plots for the simple apex and width search
algorithm (Figures 9, 12, & 15) show broad horizontal line
segments which are a direct artifact (and evidence) of the
peak widths being mischaracterized due to the presence of
other interfering peaks. The plots for Successive Dominant
Peak Removal (Figures 10, 13, & 16) are immune to this, but
miss peaks because the model is not accounting for close-in
overlapping peaks of similar size. The plots from Successive
Multi-Peak Removal (Figures 11, 14, & 17) show none of
these artifacts and are pleasantly boring and logical in what
they show. For a measurement system, boring and logical are
an indication of success.

x10° Basic Peak Finding
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Abundance

P

0
462 464 466 468 470 472 474
miz (AMU)

Fig. 9. Simple apex and width search applied between 462 and 474 AMU.
The larges peaks are easy to find, and their FWHM are easy enough to
calculate. However, even the small overlap between peak bases results in
an inability to resolve the peak base widths.

The first data range is between 462 and 474 AMU,
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Fig. 10. Successive Dominant Peak Removal applied between 462 and 474
AMU. Using the model, we are able to estimate the FWHM of the larger
peaks, but also find their base widths and several smaller hidden peaks.

x10° Peak Finding with Successive Multi-Peak Removal
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Fig. 11.  Successive Multi-Peak Removal applied between 462 and 474
AMU. In this case, the algorithm is looking for side peaks from the start
and thus is better able to find and characterize more of them.

displayed in Figures 9 — 11. In this region, the peaks are
relatively well separated, and we see that at least for the
three largest peaks, the height and width estimates can be
accomplished via a simple algorithm, as shown in Figure 9 .
In Figure 10, we see that Successive Dominant Peak Removal
finds not only the three main peaks, but some smaller peaks
that were previously hidden. It is a peak modeling question
to determine if those smaller peaks should be considered part
of the trailing skirt of a larger peak or an individual peak. In
Figure 11, we see that the Successive Multi-Peak Removal
method identifies even more potential peaks because the
hidden peaks are considered part of a multi-peak cluster.
This allows their contribution and that of the main peak to
be calibrated together. Since the peaks near 467 and 468 are
considered together, their relative contributions to the overall
peak are better balanced.

Figures 12 - 14 show a mass range between 520 and
535 AMU. We see in Figure 12 that while a simple apex
method can find a lot of apexes, the width calculations are
completely confused by the overlap of the peaks. Figure
13 shows Successive Dominant Peak Removal applied to
this range. It provides better estimates of the peak widths,

Basic Peak Finding
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Fig. 12. Simple apex and width search applied between 520 and 535 AMU.
Note how most of the peak half-max widths are mischaracterized, due to
the tight clustering of peaks.

Peak Finding with Successive Dominant Peak Removal
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Fig. 13.  Successive Dominant Peak Removal applied between 520 and
535 AMU. Peak widths are less likely to be overestimated, but a close side
peak may result in that peak being missed, as happens at about 521 AMU.
Furthermore, because the dominant peak is modeled without considering the
side peaks, all the effects of peak superposition are assigned to the dominant
peak, resulting in side peaks being underestimated.

but because it does not take side peaks into account, many
potential peaks are ignored by this method. The results from
Successive Multi-Peak Removal are shown in Figure 14.
We see that more side peaks are found and their respective
contributions to the abundance curve are more accurately
accounted for. We have the best of both worlds, in which we
see all the peaks from the original, simple method (and some
hidden ones), but also have reasonable peak width estimates.

Finally, the mass range between 467 and 481 AMU is
shown in Figures 15 - 17. In Figure 15 we see that the peak
overlap causes really poor width estimates, most obviously in
the peaks near 474 and 476 AMU. Those peaks also expose
the issue with Successive Dominant Peak Removal (Figure
16), as the larger peaks at 474 and 476 are identified, but
the side peaks are lost. In Figure 17, we see that Successive
Multi-Peak Removal sees the side peaks, makes a reasonable
estimate of their widths, and scales their height so as to take
into account the effect of superposition of the peaks. It also
finds previously hidden peaks that were missed by the other
two methods.
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Peak Finding with Successive Multi-Peak Removal
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Fig. 14.  Successive Multi-Peak Removal applied between 520 and 535
AMU. Note the more rational estimation of peak widths and heights. Since
clusters of peaks are considered together, they are mutually scaled.

Basic Peak Finding
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Fig. 15. Simple apex and width search applied between 467 and 481 AMU.
Again, most apexes are detected, but the width calculations are unusable.

VII. CONCLUSIONS AND FUTURE DIRECTION

As mentioned at the beginning, a simple method that
identifies apexes in the abundance curve either by a peak
search or by finding the positive to negative zero crossings of
the abundance curve slope, then searches about those apex
points for the full-width, half-max (FWHM) and the base
width, works well when peaks are isolated and the signal to
noise ratio (SNR) of the curve is high. The method of picking
the largest peak in a region of interest and then iteratively
modeling and removing the largest remaining peak, also
works well when the largest peak is significantly larger than
all the overlapping peaks so that is FWHM point can be
determined before an interfering peak is encountered.

Instead, the issues of interfering peaks that show up before
the width measurement point (e.g. FWHM) or peaks that are
so close to a larger peak that they can only be detected by
the bloated shape of the larger peak, are more difficult.

A reasonable question to ask is, “How common are
these side peaks?” Statistics gathered on the data in these
experiments are shown in Table I. We can see here that even
in such a complex mix as shown in the previous section,
the percentage of peaks with side peaks is less than 8%. Of
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Fig. 16.  Successive Dominant Peak Removal applied between 467 and
481 AMU. While the peak width calculations are better in most cases, the
priority for the dominant peak means that the peak at 474 hides the peak at
475 and the peak at 476 hides the peak at 477. This also results in poor peak
width estimates. The peak at 468 is ignored since it appears too asymmetric
to be counted.
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Fig. 17.  Successive Multi-Peak Removal applied between 467 and 481
AMU. By considering multiple peaks together, we can now see closely
spaced peaks (such as the ones at 475 and 477). We also can accept the
peaks around 468 as being comprised of multiple overlapping peaks.

those, more than 1/4 have second side peaks. This means that
one can identify most of the peaks in this test with simple
methods, Successive Dominant Peak Removal, but for that
small but significant fraction of the peaks, Successive Multi-
Peak Removal is necessary to produce reasonable results.

It is reasonable to ask about whether an alternate peak
model would produce better results, particularly in modeling
the asymmetry often seen in width of peak skirts. To be
useful, such a model would have to be easily parameterized
from simple searches/calculations on the original measured
abundance curve. This makes many of the functions used to
abstractly model individual peaks less useful in a measure-
ment environment.

In summary, the new algorithm is a combination of the
following steps:

o The mass axis is segmented into different regions with
interesting levels of abundance. These separate interest-
ing regions are searched individually for peaks.

o Within each region, a search for local maxima is con-
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Peak Percent (w.r.t Percent (w.r.t
Type Count | center peak) | left/right peaks)
Center 493 100 NA
Left 12 2.4341 NA
Left 2 1 0.2028 8.3316
Right 27 5.4767 NA
Right 2 5 1.0142 18.5185
TABLE 1

STATISTICS OF THE CLUSTER LOCATIONS OF PEAKS FOUND IN
EXPERIMENTS.

ducted and the locations and heights of these apexes
are recorded. The largest of these peak candidates is
identified as the starting point for width searches.

o If the search for the peak width crosses any side peaks,
these are included into the model for peak removal.

e The data for the peak and any side peaks is fit to a
model which is used to remove the abundance due to
the peak(s). The rest of the peak width calculations are
based upon the model(s) of the removed peak(s).

o The process is iterated in each individual region of in-
terest until all peaks have been identified and removed,
before moving to the next region of interest.

Through improved segmentation of the measurements and
clever use of simple models, a dramatic improvement in
peak finding is achieved, at least in regions where there is
substantial overlap between peaks [12], [13]. In these situa-
tions, Successive Multi-Peak Removal provides dramatically
improved results over the previous methods.

The “divide and conquer” nature of the algorithm dividing
the mass axis into smaller, separate regions of interest and
then applying an iterative methodology only on those smaller
regions keeps the computational complexity of the new
algorithm low. This means that improved peak detection
and compound identification can be made directly on the
instrument, rather than being relegated to specialized post-
processing. Even if a more computationally intensive post
processing methodology is applied, the segmentation and im-
proved initial peak characterization give an advanced search
or machine learning algorithm a set of smaller search spaces,
and improved starting guesses in each of those spaces.

Again, while this is not a typical control system identifi-
cation problem, system theoretic thinking allows us to see
that we need to know when to switch models in real time.
Experience with real-time systems pushes us in the direction
of an algorithm that is computationally feasible with the
Embedded System inside a commercial analytical instrument.
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