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Abstract—This paper is a brief tutorial on methods for
using modulated signals in feedback loops, and especially of
the different methods and trade offs used for demodulating
those signals to get information for the control loop. Modulation
and demodulation are often understood as being part of
communication theory, but the methods used to demodulate
control signals can have a dramatic effect on the amount of
delay, noise, and nonlinearity that gets passed from the desired
control information into the feedback loop itself. In this tutorial,
we hope to give a more fundamental understanding of how to
properly use demodulation to minimize “sensor noise” before
it ever enters into the loop.

I. INTRODUCTION

Understanding the utility and methodologies of using
modulated signals in feedback loops is not common, and
is usually limited to a particular type of modulation in
a particular application. Seen primarily as belonging to
communication theory, this subject gets little attention. Often
only the simplest embodiments are presented, ignoring the
potential noise, delay, and nonlinearities that these methods
can introduce in the desired signal. While the simplest
methods have the advantage of ease of implementation with
simple analog circuits, they are decades behind the times.
New digital (and analog) methods make practical a whole
slew of coherent methods. Even then, these methods are often
only understood from a communications perspective, where
the lack of a feedback loop make the role of noise, delay, and
nonlinearities in the sensor signal far less significant. To get
the most out of our control loops, it is worth fundamentally
understanding demodulation.
Still, whether by design or necessity, many of the signals

that are used to mark position, velocity, and/or acceleration
are modulated onto some carrier. The position signals in
hard disk drives are in a pattern of alternating polarity
magnetic domains. Motor control is often achieved via shaft
encoders with alternating patterns around the circumference.
Laser interferometers work by detecting the phase between
a reference signal reflected off of a mirror at a fixed distance
and a measurement signal reflected off of a mirror on a
moving object.
Nature also makes use of modulation in the firing of

neurons [1], [2] which “fire” not with a DC level, but with the
presence or absence of a string of pulses. A higher level of
firing corresponds to a higher frequency of the pulses, not
a greater amplitude. As these pulses are all non-negative,
demodulation of the neuron signal can be done simply with

*Daniel Y. Abramovitch is a system architect in the Mass Spectrometry
Division, Agilent Technologies, 5301 Stevens Creek Blvd., M/S: 3U-DG,
Santa Clara, CA 95051 USA, danny@agilent.com

averaging. Why would nature choose to use a modulated
signal? Modulating a signal makes it less susceptible to
offsets and baseline noise. Baseband (DC) signals often can’t
travel far, encode biases and offsets, and are susceptible to
drift.

Often, a modulated signal is the only way to encode a
position or velocity measurement with sufficient Signal-to-
Noise Ratio (SNR) for feedback control. Sometimes, we
are looking for the effects of the system on the modulated
signals. Sine-dwell (also known as swept-sine in industry)
measurements of dynamic systems rely on the system’s
response to a particular sinusoid at a particular frequency.
For atomic force microscope (AFM) measurements of soft
biological samples [3], [4], [5], it’s more advantageous to tap
the probe tip across the surface using an AC drive signal, so
that the surface experiences compression forces but minimal
shear. In these problems, extracting the surface’s affect on the
cantilever oscillation is the key to characterizing the surface.
The faster and more accurately an AFM can do this, the more
effective the measurement [6], [7], [8], [9].

No matter what the original motivation, we often need to
demodulate these signals to actually use them in a feedback
loop. How we do this demodulation depends not only on
the modulation method, but on the technology available to
do the math. The advent of improved digital electronics has
allowed for a far more exotic set of modulation/demodulation
schemes. For use in feedback control loops, we must further
consider the latency of the demodulation computation
and the achievable SNR from a method. This paper
will attempt to give a cohesive overview of the different
demodulation methods as they are applied in feedback loops.

For the purposes of feedback control, once we have
done everything else right, we are limited [10] by latency
around the loop and by the noise that Bode’s Integral
Theorem tells us we cannot completely eliminate [11]. A
practical linear analysis of noise through a loop can be
accomplished using a PES Pareto methodology [12], but
the final takeaway from that method is that one should pay
attention to eliminating noise before it enters the loop. While
the simplest, non-coherent, “slow and noisy” demodulation
methods may suffice for a large set of important problems,
there are problems for which doing a little bit more math –
in the right way – can dramatically improve the signal to
noise and dramatically lower the latency of the extracted
signal. In other words, we can minimize some of the factors
that limit the performance of our feedback loop. Those
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factors are hard to limit from control design only.

II. PULSE MODULATIONS

Neurons Firing

(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

Integrated Response

Fig. 1. Drawings of pulse modulation of the type used by neurons firing.
On the left, we see that an increase in the input to a neuron causes an
increase in the frequency (not the magnitude) of the pulse train. On the
right, we see the simplest demodulation, a kind of averaging, that can be
done on the pulse train to extract a lower frequency value.

One family of modulation schemes involves modulating
pulses of fixed height, either by their position (Pulse Position
Modulation, PPM) or by their duty cycle (Pulse Width
Modulation, PWM). One of the simplest forms of modulation
can be found in nature, where neurons “fire” with a series
of positive voltage pulses. The absence of the pulses can be
viewed as not firing, but once the pulses do start firing, an
increase in signal is denoted not by a higher amplitude, but
a higher frequency of the positive pulses [1], [2]. This is
sketched in Figure 1. Clearly, the lack of pulses denotes a
baseline for the received signal, but the level above a baseline
must be obtained through some finite length averaging of the
pulse train, which can be seen on the right side drawings,
symbolizing integration of their counterparts to their left. The
higher the pulse frequency, the higher the baseline of the
integrated result.
It is worth noting that averaging only works when the

signal is single sided and that the speed of obtaining a usable
output is limited by the length of the average taken.
Outside of nature, pulse-position-modulation (PPM),

pulse-frequency-modulation (PFM), and pulse-width-
modulation (PWM) use essentially the same ideas. While
PFM is the closest analog to neurons, PWM is perhaps the
most ubiquitous, showing up in many forms of low level,
slow control. While it shows up in communication systems
[13] as NRZ data, for the purpose of control, it is usually
used as a method to encode a control input or output signal
into a binary, [0,1] signal.
Pulse Position Modulation (PPM) is usually a matter of

whether a pulse is there or not. The meaning of the signals
is – in large part – related to whether the output signal is
meant to be a baseband (low frequency) value or whether it is
a driving a clock or oscillator signal. In the former case – and
if the pulses are all single signed (e.g. all positive) then a low
pass filter (LPF) will average the signals and give a usable

low frequency output. If the thing being driven is a clock or
oscillator, then the leading edges can go through a phase-
detector (along with the clock leading edges) to generate a
phase error (Section VI). Pulse Frequency Modulation (PFE)
is similar to PPM, but the value of the modulation is encoded
in the density of the pulses. When driving a clock, there is
usually a minimum pulse rate to allow the clock (a phase
tracking loop based on a PLL) to maintain synchronization.

Controller
Sample Points

50% Duty Cycle

10% Duty Cycle

90% Duty Cycle

Carrier Signal

PWM Signals
(Timer Based)

Fig. 2. Classic PWM. The numerical input modulates the duty cycle of
the pulses with respect to a fixed carrier frequency.

Pulse Width Modulation (PWM) (Figure 2) is commonly
used in control systems as a cheap substitute for a digital-to-
analog converter (DAC). The control signal that has values
ranging from 0 to 1 is modulated into the width of a pulse
stream with 0 being represented by a 0% duty cycle and
1 being represented by a 100% duty cycle. PWM allows
the modulated signal to be transmitted as binary data on a
digital signal line, greatly increasing the immunity to low
level random noise. The digital signal – being received at
the plant – is simply low pass filtered (LPF) to produce an
averaged output that once again spans the [0,1] range. This
signal can be converted into a voltage and amplified to drive
an actuator.
Pulse Width Modulation (PWM) need not have a nonzero

offset, although this enables the most trivial form of demod-
ulation: averaging. For our purposes, averaging and low pass
filtering are used interchangeably in this context. PWM is a
critical method to understand in part because of its ubiquity
in controlling slow processes, such as voltage references,
pressure, and temperature. In these contexts, the control law
is most likely a PID or PI controller producing an “analog”
(multi-bit) value. These values could be sent to the plant
via a Digital-to-Analog Converter (DAC), and transmitted
via an analog signal line, but this is more expensive than
the PWM function and the analog signal is more susceptible
to noise than a binary signal that is pulse-width-modulated.
The PWM signal, transmitted on a binary signal line, can
have small amounts of noise cleaned up by simply adding
a relay centered at the voltage equivalent of 1/2 to estimate
if the received signal was at logical 0 or logical 1. Once
inside the receiving device, an average of the signal recovers
the original multibit value (between 0 and 1). This can then
be appropriately scaled to drive whichever device is being
controlled.
PWM relies on the assumption that the actual signal

value changes far more slowly than the modulation. This
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means that a slowly changing “analog” value can be encoded
into the PWM and the averaging of the 0-1 binary input
will produce a value on the [0,1] range that represents the
original multi-bit signal. While demodulating the signal can
be accomplished simply with LPF/averaging, modulating
the slowly changing signal into PWM involves producing
a binary signal that is changing far faster than the “multibit”
signal. This would require a microprocessor to spit out
signals at a far faster rate than the control loop signaling.
For example, a processor sampling analog data at say 0.5 Hz
might need to modulate this signal two orders of magnitude
higher, say at 100 Hz, so that the averaged/LPF signal was
relatively smooth when looked at with a 0.5 Hz sample rate.
For this reason, many microcontroller chips include a bit

of PWM logic that accomplishes the modulation without
the processor needing to “bit bang” – a term used to
describe when a processor spends a significant fraction of
its processing time merely flipping bits at a high rate. The
function can also be accomplished using programmable logic
(PL) such as an FPGA (Field Programmable Gate Array).

III. BASIC MODULATION OF SINE WAVES

Another family of modulations used in control systems can
be explained as variants on modulating a sinusoidal carrier.
Consider the carrier signal, c(t),

c(t) = A0 sin(ω0t+ θ0), (1)

where A0 is the fixed amplitude of the carrier, ω0 = 2πf0
is the carrier frequency, and θ0 is the carrier phase. Often
θ0 is defined as 0 for simplicity. For amplitude modulation
(AM), we modify the carrier, c(t), by changing the amplitude
[14] i.e.

s(t) = (Am(t) ·A0) sin(ω0t+ θ0). (2)

Phase modulation (PM) [15] is shown in

s(t) = A0 sin(ω0t+ (θ0 + θm(t))), (3)

while frequency modulation (FM) [16] is shown in

s(t) = A0 sin((ω0 + ωm(t))t+ θ0), (4)

The development of sophisticated electronics has al-
lowed for more complex modulation schemes, such ad the
amplitude-phase modulation schemes (e.g. QAM) that en-
abled faster modems in the days before high speed Internet
connections [17].

IV. NON-COHERENT AM DEMODULATION

It is worth making a distinction here between AM and
PM/FM signals. AM signals, like the common use of Pulse
Modulated Signals, can be demodulated – if one is not too
precise about values or timing – using non-coherent methods.
That is, a carrier or clock need not be used. There is a cost to
using non-coherent methods (no clock synchronization), but
the simplicity of the circuits often make up for it. Phase and
frequency modulation require the use of a precise mixing
signal (a signal normally at the carrier frequency) which
requires more complex electronics.

R Vout

Vin

Rectifier

AM Modulated Sine

Diode Bridge Rectifier Circuit

Rectified Signal has DC component

Fig. 3. Non-coherent demodulation of an AM signal with a rectifier made
from a passive diode bridge. The amount of ripple in the output can be
limited by adding a low pass filter on the output. It can be something as
simple as adding a capacitor across Vout.

Sticking with non-coherent methods, we see one of the
most common forms in the drawings of Figure 3. On top
we see a diode bridge circuit which is one way to build a
full wave rectifier using passive circuits. The output of the
bridge is tied to a resistor so that if the input is an amplitude
modulated (AM) sine wave (upper left), the output (upper
right) is rectified. That rectified signal can now be averaged
using a low pass filter (LPF) to show extract the amplitude
modulation. There is an inherent assumption that the modu-
lation is at frequencies far lower than the carrier frequency,
f0. The averaged signal will exhibit different levels of ripple
(signal at 2f0 getting past the LPF) depending upon the
LPF itself, but generally we see that the averaged signal
can return the modulated amplitude. One implementation
of this is known as an analog RMS-to-DC circuit[18]. In
this reference the example of a 36 ms settling time of the
AD736 [18] is 3,168 periods of the 88 kHz signal used in
[6]. A 36 ms settling time sets the Nyquist frequency at
0.5*(1/36e-3) = 13.89 Hz. From this a reasonable closed-
loop bandwidth limit would be 1/10 of the Nyquist frequency
or about 1.4 Hz, which severely limits achievable bandwidth
from a fairly high speed signal.
For many low speed, low to moderate precision control

problems, this type of signal demodulation is sufficient. The
disadvantages of such a simple scheme are that it allows
through broadband noise, nonlinearities, and harmonics of
the carrier frequency. Adding more LPF to minimize these
effects will also lower the effective bandwidth of the demod-
ulated signal.

V. BASIC IQ DEMODULATION: LOCK-IN AMPLIFIERS

sin( t)�o

s(t)

cos( t)�o

Low Pass
Filter

Low Pass
Filter

I(t) I (t)LP

Q (t)LPQ(t)

Fig. 4. Operation of a lock-in amplifier.

The next important demodulation component to under-
stand is the in-phase/quadrature (IQ) demodulator. These are
commonly used in communication systems and in precision

476



instrumentation. Among the simplest of these instruments
to understand is the lock-in amplifier (Figure 4). Lock-in-
amplifiers (LIAs) and coherent demodulation have typically
been used in a variety of communication and measurement
systems [19], [20], [21], [22], [23]. The difference is that
those systems did not close the feedback loop and thus were
not affected by latency. Furthermore, many LIAs require
post-integration low pass filtering to minimize the effects of
harmonics [24], [25].
Lock-in amplifiers are common measurement instruments

which produce an in-phase and quadrature signal to mix
with the incoming modulated sinusoid. In Figure 4, the
input signal is mixed with a sine and a cosine at frequency
ω0 = 2πf0. By convention one signal, I(t), is called the
in-phase signal and the other, Q(t), is called quadrature.
The mixing signals will cause any component of s(t) at
ω0 to produce a signal at baseband (no carrier) and one
at 2ω0. The low pass filters are supposed to remove this
2X frequency harmonic, as well as anything else at high
frequency. Generally any signal not at ω0 should average
out in the low pass filters.
The integrated in-phase (I(t)) and quadrature (Q(t))

branches now have signals from which the magnitude and
phase can be extracted via a standard rectangular to polar
coordinate transformation. That is, if

s(t) = A sin(ω0t+ θ), then (5)

A =
√
I(t)2 +Q(t)2 and θ = arctan

I(t)

Q(t)
. (6)

Again, there are inherent assumptions about A and θ having
frequency contents far below ω0. Lock-in amplifiers are very
useful laboratory instruments for examining signals when
delay doesn’t matter much, but when we chose to use IQ
demodulation in feedback loops, we are far more concerned
about delay. A second issue is doing the computations
of Equation 6. Square root and arctangent functions, are
relatively expensive for real-time computations. Even the
famous CORDIC algorithms developed in the 1950s for a US
Air Force computer and used in the original HP-35 pocket
calculator [26], [27] typically took 1 computation cycle per
bit of accuracy, meaning that 32 bits of accuracy took up to
a whopping 32 computer clocks. While this seems relatively
small by current standards, it is not when the computation
is being pushed by extremely high sample rates, as found
in nano-mechatronics. For such systems, both the number of
cycles and the variability of the number of cycles needed
for any particular computation, are a particular hindrance
to high bandwidths. We will see later, that there are ways
of mitigating this. First, we need to introduce one more
foundational piece, the phase-locked loop (PLL).

VI. BASIC COHERENT DEMODULATION: PHASE-LOCK
METHODS

One last critical component in this modula-
tion/demodulation universe is that of phase-lock methods.
The most basic component is the phase-locked loop (PLL)

Loop
Filter

Phase
Detector

Voltage
Controlled
OscillatorSignal

Phase-Locked
to Reference

Signal
Reference

Fig. 5. A general PLL block diagram. Each PLL has a phase detector, an
oscillator, a loop filter, and operates in feedback.

(Figure 5), which will be described below, but these methods
are far more general and thus deserve their own mental
subset. This author has argued that with PLLs in every
computer, smart watch, television, radio, and generally
any piece of digital electronics, the PLL is the most
ubiquitous feedback loop designed by humans [13]. PLLs
are unique amongst most feedback systems in that they
include two intentionally inserted nonlinearities: the voltage
or numerically controlled oscillator (VCO/NCO) and the
phase detector. The former generates an oscillator frequency
in response to an input voltage level or number and the
latter extracts that phase and/or frequency from combining
a pair of oscillating signals [28], [29], [30], [31], [32], [33].
In its most mathematically pure form, a PLL involves

the same mixing (multiplying of two sinusoids) described in
Section V on IQ demodulators. The difference here is that
the latter are open-loop devices while PLLs are feedback
mechanisms. While the non-coherent demodulation methods
described in Section V are only useful for extracting the
amplitude of a modulated signal. A PLL – by aligning
the internal oscillator with the fundamental oscillation of
the incoming signal – allows the phase (and sometimes
frequency) of the incoming signal to be determined. This
then opens up a world of other demodulation methods [34],
[35], [36], [37].

Loop
Filter

Voltage
Controlled
Oscillator

VCO
Control
Voltage

Signal
Phase-Locked
to Reference

Signal
Reference

Asin( t + )� �i i

cos( t� �
� �

+ )

Fig. 6. A classical mixing (analog) phase-locked loop.

First introduced in the 1930s [38], a classical analog
phase-locked loop (Figure 6) takes a reference sinusoid
and mixes (multiplies) another sinusoid that is conceptually
in quadrature (90o out of phase) with it. Via the use of
trigonometric identities and low pass filtering (LPF), the loop
creates an error signal in the baseband which is a sector 1-
3 nonlinearity. This allows the loop to be closed and the
difference signal – corresponding to the phase – to be driven
to 0.
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Fig. 7. A practical version of the classic mixing phase-locked loop: note
the addition of a bandpass filter preceding the loop to limit input noise and a
high frequency low pass filter within the loop to attenuate the 2X frequency
component with minimal impact on the loop dynamics.
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Fig. 8. Conceptual block diagram of PLL with sine detector. This is a
transition stage in the analysis of the classical mixing loop. This model
represents the effect of the multiplying detector once the high frequency
component has been attenuated.

Because the low frequency (baseband) behavior of the
multiplied sinusoids is a sine – a quadrant 1 and 3 nonlinear-
ity (Figure 9), the phase detector output signal can be used as
an error signal to drive the frequency and phase differences
between the reference sinusoid and the internal sinusoid to
some constant value or 0 (depending on the system type).
The internal sinusoid then represents a filtered or smoothed
version of the reference sinusoid.
For multibit analog input signals, one group of digital

PLLs (DPLLs) approximates the analog loop in the same
sense way that digital controller approximate analog ones:
the modulated carrier signals are digitized using an ADC,
acted upon by a set of digital filters, fed into a numerically
controlled oscillator (NCO), and that signal can be converted
back to analog if needed using a DAC. However, this limits
the carrier signals to only those that can be effectively
digitized by an ADC. PLL circuit designers, being a clever
bunch, have found ways to modify these methods so as
not to require a full ADC conversion. For these binary
digital signals, Walsh functions replace sinusoids. Special
phase detectors work on edges of clock signals, or even on
simply [0,1] bits coming in from a communication link. In
these cases, the analysis moves from the comfortably ana-

�

�

Fig. 9. A quadrant 1-3 sector nonlinearity assumed for almost all PLL
phase-detectors.

lytical methods that use trigonometric identities on sinusoids
to almost purely heuristic methods based on an intuitive
understanding of the phase detector behavior both in its
baseband signals (the demodulated ones) and in the residual
high frequency signals. Although uncomfortable for those
of us used to having analytical descriptions, these circuits
are ubiquitous in low power digital electronics and therefore
should not be ignored.
Typical block diagrams of PLLs in the literature resemble

Figure 6, however practical loops often more closely resem-
ble Figure 7, in which a high frequency low pass filter is
used to attenuate the double frequency term and a bandpass
filter is used to limit the bandwidth of input signals to the
loop. A general sinusoidal signal at the reference input of a
PLL as shown in Figure 7 can be written as:

vi = R1(t) = A sin(ωit+ θi). (7)

Without loss of generality, we can assume that the output
signal from the Voltage Controlled Oscillator (VCO) into
the mixer is given by

vo = V COout(t) = cos(ωot+ θo). (8)

The output of the mixer in Figure 7 is then given by

vd = Mixerout(t) = AKm sin(ωit+θi) cos(ωot+θo), (9)

where Km is the gain of the mixer.
Typically, analysis of such a PLL is done by taking several

simplifying steps. Using the familiar trigonometric identity
in terms of the PLL:

2 sin(ωit+ θi) cos(ωot+ θo) = (10)

sin((ωi + ωo)t+ θi + θo) + sin((ωi − ωo)t+ θi − θo)

and then making two fundamental assumptions leads to the
commonly used model of the analog PLL. Let θd = θi− θo.
Then these assumptions are:

1) The first term in (10) is attenuated by the high fre-
quency low pass filter in Figure 7 and by the low pass
nature of the PLL itself.

2) ωi ≈ ωo, so that the difference can be incorporated
into θd. This means that the VCO can be modeled as
an integrator.

Making these assumptions leads to the PLL model shown in
Figure 8. The problem is that this is still a nonlinear system,
and as such is in general difficult to analyze. The typical
methods of analysis include:

1) Linearization: For θd small and slowly varying

sin θd ≈ θd, cos θd ≈ 1, and θ̇d
2 ≈ 0.

While this is useful for studying loops that are near
lock, it does not help for analyzing the loop when
θd is large.
2) Phase plane portraits [28], [30]. This method
is a classical graphical method of analyzing the
behavior of low order nonlinear systems about a
singular point. The disadvantage to this is that
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phase plane portraits can only completely describe
first and second order systems. The saving grace
here is that by far the vast majority of PLLs are
first or second order.
3) Simulation. Note that explicit simulation of the
entire PLL is relatively rare. Because the problem
is stiff, it is more typical to simulate the response
of the components (phase detector, filter, VCO) in
signal space and then simulate the entire loop only
in phase space.

The linearized model is used for most analysis and mea-
surements of PLLs. We can still analyze the the sinusoidal
phase detector model shown in Figure 8, it has been possible
to apply the technique of Lyapunov Redesign [39] to phase-
locked loops [36], [13]. This can even be applied when the
phase detector is digital, but the rest of the loop is analog,
known as a classical digital phase-locked loop [37].
Changing the phase detector and VCO can result in a

system for which this model is very accurate. It is possible
to learn quite a bit about the phase behavior of the PLL from
linear analysis.
Again the difference with an I-Q demodulator is the latter

is an open-loop device – never minimizing the phase differ-
ence between input and output signals – while a PLL closes
the loop on the phase difference so as to drive it towards 0.
In contrast to an I-Q demodulator, in a PLL, the magnitude
of the demodulated signal is trivially available from the
remaining baseband signal. The phase error can be viewed as
a residual instantaneous phase difference between the input
and the locked oscillator signal. In an IQ demodulator, the
magnitude and phase are typically extracted via a rectangular
to polar coordinate transformation as shown in Equation 6.

Signal

Reference

VCO

Signal

�e�

�� ���	

��	

Vd

Vdm

Fig. 10. Classical mixing phase detector
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Fig. 11. Over driven mixing phase detector
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Fig. 12. Phase detection using an XOR gate. Note that this accomplishes
the same thing as an over driven mixer, but with digital circuitry.

A classical mixing (multiplying) phase detector is shown
in Figure 10. Once the 2X frequency component has been

vi

vo

v XOR vi o

residual

vi

vo

v XOR vi o

2X

residual

Fig. 13. Phase detection using a XOR gate. On the left, a phase shift
between reference and VCO output of π/2 produces an output of the phase
detector whose baseband component is 0. On the right a relative phase shift
of π/4 results in an output of the phase detector whose baseband component
is vd/2. The output is broken up here into a 2X frequency signal and a
residual. The 2X signal averages to 0, while the residual averages to the
baseband phase error.
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(Data)

(Clock)

vi
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c ab

Data

bit center
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Fig. 14. Block diagram for a Bang-Bang phase detector used in clock-data
recovery PLLs.

integrated out with the loop filter (and any high frequency
low pass filter), the resulting phase characteristic is the
sinusoidal one that we discussed earlier.
If one overdrives the circuit so that it saturates, then we get

the phase response that is shown in Figure 11. Understanding
the output of such a phase detector relies on a combination
of averaging analysis and heuristics. However, one of the
more interesting features of such a phase detector is that it
can be implemented using an Exclusive-OR (XOR) gate as
shown in Figure 12. One advantage of such a phase detector
is that the loop gain is now independent of input signal
amplitude. Furthermore, an XOR phase detector’s response
can have a larger linear range than a sinusoidal detector
(mixer). The disadvantage is that the linearity of the baseband
response is affected by the relative duty cycles of the input
and VCO signals [31], [32]. The standard analysis done
by PLL engineers involves drawing out square waves as
shown in Figure 13 and then doing some heuristic “analysis”
to convince themselves that the baseband (low frequency)
component of the signal behaves with the triangular phase
response shown in the right of Figure 12 (for a 50% duty
cycle of the input signal).
Even more sophisticated digital circuits, such as a phase-

frequency detector can integrate pulses to lock in not only the
phase, but the frequency of an incoming signal. The analysis
for such loops is often heuristic and graphical, but since
most PLLs model the oscillator – either a voltage controlled
oscillator (VCO) for analog loops or a numerically controlled
oscillator (NCO) for digital loops – as an integrator and the
loop filter often contains another integrator, the analysis often
follows that of control of an integrator plant under PI control.
If all modulated signals were simply sinusoids,

demodulated with analog circuits, the field of phase-
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Fig. 15. Time domain response of Half Rate Bang Bang PLL simulation.
Vertical fuzziness seen in phase detector output due to filters used by
Matlab’s decimation feature. The refIn signal is the data input. The clockIn
is the recovered VCO clock. The PD State is the state of the phase detector.
This is passed through two different low pass filters. The LP PD Out is low
passed with a 4 GHz bandwidth. The VLP PD Out is the phase detector
output passed through a 400 MHz bandwidth filter. In the bottom plot, the
input phase is θi and the recovered clock phase is θo.

locked methods would be a lot duller. Because accurate
sinusoids are often difficult to produce in simple circuits
and difficult to maintain across a circuit, deviations using
non-sinusoidal shapes have arisen, and phase detectors
beyond mixers (multipliers) have been employed. These
circuits are even more nonlinear than the classical PLL,
but they have clear advantages in simplicity and large
scale reliability. A perfect example involves replacing the
sinusoids with square waves and the mixer phase detector
with an Exclusive-OR circuit. The signals are binary, but
the baseband behavior of the output of the XOR follows
that first and third quadrant nonlinearity [13].

The point of this discussion is not to teach a lot of phase
detector circuits (see [13] for that), but to point out that
phase-lock methods – and the ideas behind them – can be
used in all manner of signals that do not match our typical
control system signals. Understanding that even these pulse
trains and/or binary signals can yield information allowing
us to synchronize an oscillator (or some mixing signals for
an IQ demodulator) allow us to extract clean signals from all

manner of encodings. As strange a device as the so-called
Bang-Bang phase detector of Figure 14, can produce
results that, when averaged to reveal the demodulated low
frequency behavior, yield understandable phase relationships
as shown in Figure 15 [40], [41].
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Fig. 16. A Costas loop combines a PLL and an IQ demodulation function.

It is worth understanding the Costas Loop, shown in Figure
16 because its progeny show up repeatedly in designs. We
will see an example of one in the Laser Interferometers
described in Section X. The upper branch of the loop, labeled
as quadrature, acts like a PLL, driving the phase between the
input and the mixing signal to 0. When the phase error in
the upper branch is driven to near 0, the oscillation in the
lower branch is in phase with the input signal. In the absence
of modulation, the two in-phase signals multiplied together
essentially form a sin2(·) quantity which would produce an
always positive value, especially when integrated via any
low pass filter. Any amplitude modulation may be extracted
almost trivially at this point. While the Costas Loop is most
commonly associated with communication signals using
Binary Phase Shift Keying (BPSK) this basic idea can be
extremely useful in speeding up precision IQ demodulation
(Section VII) or in laser interferometers (Section X).
Phase-lock methods allow us to synchronize an internal

oscillator with some external reference signal. In doing so we
use feedback to get phase alignment between signals, which
simplifies a lot of other signal extraction. In some cases, we
will see that the alignment provided by phase-lock methods
allows a trivial extraction of other signal information, greatly
reducing the computational load.

VII. PRECISION INTEGRATION LOCK-IN

sin( t)�o

s(t)

I(t) I (t)INT

Q(t) Q (t)INTcos( t)�o

( )dtʃ
0

MTO1
MTO

( )dtʃ
0

MTO1
MTO

Fig. 17. Lock-in amplifier with precision integration over an integer number
of periods.

The lock-in amplifier methods described in Section V had
the disadvantage – from a controls perspective – of having a
fairly long delay, because their use models were not affected
by delay. However, as we will see in the examples that follow
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this section, many of the uses of demodulation in control
systems require a minimization of that delay.
One of the sources of delay is the long time constant in the

LPF needed to minimize the effects of the higher harmonics
produced in the mixing operation. In a pure circuit, this
would only be the 2ω0 harmonic, but as many circuits have
small nonlinearities in practice, they had produce a wide
set of higher harmonics that are hard to predict in advance.
Returning to Figure 4, we can replace the generic LPF with
a precision integral of Figure 17.
Mixing with in-phase and quadrature signals as shown in

Figure 17 yields∫
I(t)dt =

∫
s(t) sin(ω0t)dt

≈ ∫
A sin(ω0t+ θ) sin(ω0t)dt

+
∫
n(t) sin(ω0t)dt

(11)

and ∫
Q(t)dt =

∫
s(t) cos(ω0t)dt

≈ ∫
A cos(ω0t+ θ) cos(ω0t)dt

+
∫
n(t) cos(ω0t)dt.

(12)

Here n(t) is the noise in s(t). Coherent demodulation (a.k.a.
lock-in amplification) is based on the idea that if one sets
the mixing signal to the same fundamental period as the
drive signal, T0 = 1

f0
= 2π

ω0
, and integrates, then most of

the terms drop out, leaving only a signals at baseband and at
2f0. The higher frequency signal can be removed with a post-
integration notch or low-pass filter. Often, this low pass filter
effect is achieved just by integrating over a large number
of periods. With analog circuits, the difficulty in precisely
knowing the fundamental frequency, f0, means that it is
difficult to place an analog notch at the exact 2f0 frequency
(or those of any other harmonics). For this reason, the use
of analog Lock-In-Amplifiers for coherent demodulation is
usually accompanied by a broad low pass filter. The negative
phase effects of using such a filter limits the closed-loop
bandwidth of any system using such a demodulator.
Ideally, we will want to integrate over an integer, M,

number of periods of the frequency that we wish to demod-
ulate. Making the integrals definite and using well known
trigonometric identities, yields:

1
MT0

∫MT0

0
I(t)dt = A

2

(
cos θ 1

MT0

∫MT0

0
dt

− 1
MT0

∫MT0

0
cos(2ω0t+ θ)dt

+ 1
MT0

∫MT0

0
n(t) sin(ω0t+ θ)dt

)
and

(13)

1
MT0

∫MT0

0
Q(t)dt = A

2

(
sin θ 1

MT0

∫MT0

0
dt

− 1
MT0

∫MT0

0
sin(2ω0t+ θ)dt

+ 1
MT0

∫MT0

0
n(t) cos(ω0t+ θ)dt

)
.

(14)

Equations 13 and 14 both have the properties that the
second term on the right hand side goes to 0 for all positive
M . The third term goes to 0 for increasing MT0 as long as
n(t) is uncorrelated with the mixing sinusoids.
Such precise control of the integration period is difficult in

an analog circuit but straightforward in a digital operation. As

MT0 gets large the contribution of n(t) goes to 0, yielding
the familiar relationships

Iint =
1

MT0

∫ MT0

0

I(t)dt ≈ A

2
cos(θ) (15)

and

Qint =
1

MT0

∫ MT0

0

Q(t)dt ≈ A

2
sin(θ). (16)

There are several issues with standard methods of de-
modulation. The first is that imperfections in the integration
approximation and noise in the signal require that MT0

be large, relative to the period of the frequency at which
demodulation is to take place, T0, so M must be large.

Sample Points

Signal

End of last full
period of signal

Last Sample
of Integration

Fig. 18. Integrating the partial sample of a sampled sinusoid.

End of last full
period of signal

Sample Points

Sine Wave very close to f0

Sine Wave at f0

Fig. 19. The top drawing shows a sine wave which doesn’t end up on an
integer number of sample points. Adjusting f0 slightly allows an integer
number of periods to line up with an integer number of samples, as shown
in the bottom drawing.

The second is that with a digital controller, we have to be
careful if we want to honor our desire to integrate over an
integer number of periods of oscillation. We want

NTS = MT0, (17)

where N are are the number of samples in the integration,
TS is the sample period, M is the number of periods of
oscillation, and T0 is the period of oscillation. As illustrated
in Figure 19 the data sample rate is rarely an integral
multiple of the oscillation frequency, so it is difficult to make
Equation 17 hold. Most digital systems are run at a fixed
sample rate, fS = 1

TS
. The oscillation frequency, f0 = 1

T0
,

comes from the frequencies at which we want to measure the
FRF. That means f0 will vary but fS will not. A solution is
that for any desired f0 and M , we can pick N such that:

NTS ≤ MT0 = NRealTS ≤ (N + 1)TS . (18)
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We then round NReal to the nearest integer. We don’t want
to change TS or M , so we have two options. There is
a fundamental difference between these methods when we
have a fixed fundamental frequency, f0 and when we can
adjust it. In the most common case when equality does not
hold, the last period of the integration is a partial one, as
shown in Figure 18. This will require N +1 samples where
the first N samples of the integral integrate over the complete
sample period and the last one is interpolated over a partial
sample. If we are trying to precisely match a frequency, such
as the resonant frequency of an AFM cantilever [6], [7], then
we round NReal down to the closest integer below and then
integrate over a partial fraction of an interval (Figure 18).
The length of the partial fraction of an interval changes with
every sample period and oscillation frequency, but would be
fixed during any one measurement.
One example of a practical implementation of these in-

tegrals was described in the author’s earlier work on a
low latency, high fidelity demodulation for atomic force
microscopes (AFMs) [6], [7].
In those papers, a trapezoidal rule integration is used.

This seems to provide a reasonable compromise between
minimizing latency and integration accuracy. Consider the
trapezoidal rule implementation of our integral:

∫ tN

t0

y(t)dt ≈
N−1∑
k=0

(
yk+1 + yk

2

)
TS , (19)

where TS and N are defined as in Equation 18. Between N
and N +1, we will have a partial interval integral that must
be computed∫ tk+TSh

tN

y(t)dt ≈
(
yN+1 + yN

2

)
hTS , (20)

where 0 ≤ h ≤ 1 and

h =
MT0 −NTS

TS
. (21)

Note that hTS is the integration time needed to complete
the M th period of oscillations at f0, so the fraction of a
sample period that this represents is given by h. Putting these
together and looking back in time rather than forward, we
get ∫ kTS

kTS−MT0

y(t)dt ≈ Sk where (22)

Sk

TS
=

N−1∑
j=0

(
yk−j + yk−(j+1)

2

)
+

(
yk−N + yk−(N+1)

2

)
h.

(23)

Sk

TS
=

yk
2

+

N−1∑
j=0

yk−j +
yk−N

2
+ h

(
yk−N + yk−(N+1)

2

)
.

(24)
Equation 24 is very instructive because it shows us that

the integral can be simply constructed as a FIR filter. We
can factor out a single scale factor, TS , and then we have
a main integral corresponding to the terms before the term

scaled by h and the fractional portion, scaled by h. It is also
instructive that very little about this formula is dependent
upon the sample interval, fS , and the oscillation frequency,
f0. Basically, a change in f0, fS , and/or the number of
periods in the integral, M , changes only N and h. For a
given M , T0, and TS , we pick N from Equation 18 and h
from Equation 21.
Eventually, after a lot of algebra, we got to the remarkably

simple incremental computation for the integral:

Sk =
TS

2
[Ik + h (yk+1 + yk)] . (25)

where
Ik = ΔIk + Ik−1, and (26)

ΔIk+1 = yk+1 + yk − (yk+1−N + yk−N ). (27)

This relationship was relatively straightforward to program
into an FPGA, with the fractional portion of the integral
removed from the iteration. Thus, the additions and subtrac-
tions from the incremental sum in Equation 27 are exact,
preventing the possibility of small errors in h accumulating
in the recursion. Some will recognize that this form is
essentially the same form as a Cascaded Integrator-Comb
(CIC) Filter [42].
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Fig. 20. Coherent demodulation for AFM. DC removal and post integration
filtering included.

The partial interval integral is necessitated in some cases
by needing to precisely match a predetermined oscillation
frequency. This is often due to a physical parameter – such
as the cantilever resonance in the AFM demodulator. Note
that if the exact frequency match is not critical, as with a
built in sine-dwell [23], then we can adjust T0 so that h = 0
in Equation 21. This simplifies the sum terms above.

ÑTS = MT̃0. (28)

In that case, M was generally assumed to be at least 8,
as implemented in the HP 3562A Dynamic Signal Analyzer
[20]. Furthermore, the measurement frequencies in that use
were servo system frequencies, generally significantly lower
than the frequency of a cantilever tip oscillation. Finally, the
generation of an accurate frequency response function mea-
surement did not hinge on maintaining a single frequency.
This allowed the set of oscillation frequencies to be adjusted
slightly, so that for each measurement frequency, f0 = 1

T0
,

equality in Equation 28 held.
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The adjustments to T0 to make equality hold in Equa-
tion 28 can be kept small if N andM are made large. While
this approach may be feasible for an off-line measurement
described above, or for producing signal processing results
that are not used in the feedback loop, this choice will add
to latency in the integral calculation, so we are better off
integrating over the fractional interval as described above.
Digital quadrature is documented in many numerical

computation texts [43], [44]. Generally, the algorithms for
quadrature will make use of a polynomial fit over some
number of sample points to approximate the function. The
fit of a Lth order polynomial will involve L + 1 points.
In applications where latency (time delay) is not an issue,
one can achieve higher accuracy by conducting the integral
between samples k and k + 1 using samples on either side
of this interval.
For example, the Hewlett-Packard 3562A computes the

integral of its mixed sinusoids by using a fifth order polyno-
mial fit over 6 points [20]. It uses 3 points on either side of
the interval in question. As the interval of integration slides
forward in time, points to the left and right of it are used
to give a more accurate approximation of the function being
integrated. Note that the interval over which the integral is
done is delayed by two and a half sample intervals (compared
with simply using only the latest sample point).
For use in generating the error signal for a feedback

controller, we want to minimize the latency of the integral
and for this the simplest discrete integral approximations are
the forward and backward rectangular rule approximations,
and the trapezoidal rule approximation. Because of their
small amount of delay, these are often used in generating
discrete equivalents of analog controllers [45]. The forward
rectangular rule has a single period delay. The backwards
rectangular rule has zero delay. Finally, the trapezoidal rule
has a half sample period delay.
Standard practice in digital lock-in amplifiers is to use one

of the rectangular rule approximations and rely on integrating
over many periods of oscillation to drive the error to 0.
However, by using a higher-order approximation and a partial
sample integral, we can cut the error down with significantly
fewer periods of integration.
For the amplitude modulation of the AFM cantilever, we

are mostly concerned about the magnitude of the signal. In
the case of a frequency-response function (FRF), we need
both the magnitude and phase. However, while the integrals
must be computed in real-time to keep up with the signals,
these latter quantities can be computed off line on the results
of the integrals, as they comprise a finite set of frequency
results.
The other major difference between the precision IQ

demodulation used in real-time feedback and that used in
say a stepped-sine calculation is in extracting the magnitude
and phase from the output of the precision integrators. In
Figure 20, the standard rectangular to polar computations
are done.
To extract the magnitude in real-time for a feedback calcu-

lation requires the computation of Equation 6. The difficulty
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Fig. 21. Coherent demodulation for AFM using a PLL. DC removal and
post integration filtering included.

comes in the resources needed to compute these relationships
in real time with high sample rates. For example, a highly
efficient algorithm is the so called CORDIC algorithms
[26], [27]. This algorithm computes magnitude and phase by
rotating the frame of reference until the frame of reference
and the signal have a matching magnitude and phase. The
CORDIC algorithm is computationally simple, and is at the
heart of the trigonometric calculations in the original HP-35
calculator [27]. However, to compute magnitude and phase,
a CORDIC algorithm requires one computational cycle per
bit of accuracy, so a 16-bit accuracy would require an extra
computational delay (on top of that done by the integral
itself) of 16 clock cycles. In a standard computer, this might
be considered fast, but in a DSP or FPGA which typically
complete table lookup operations, additions, and multiplies
in one or two cycles, this is considered slow.
A more time efficient calculation involves a table lookup.

However with two different numbers to look up and the high
precision desired in these calculations, the tables can become
huge. A 16-bit quantity would nominally require 216 = 64K
values. A few well placed adjustments to and restrictions
of the calculation make it possible to use a relatively small
table to give reasonably good estimates. A fuller discussion
is found in [7].
A a faster way is to use the knowledge of phase-lock

techniques to simplify the calculation. The quadrature branch
(Q) of the integral is very close to a PLL, if we allow the
mixing oscillator to have its phase adjusted in response to
the phase error in that branch. With the mixing signal phase-
locked, the in-phase (I) branch is aligned so that the output
of that integral is proportional to the cosine of the phase
difference. As that phase difference is driven to the vicinity
of 0, the cosine is approximately 1, and the magnitude drops
out trivially.
Some examples of the demodulator from Figure 21 in

action are shown in Figures 22 and 23. We see in Figure
22, the original oscillation signal on top, with the I and Q
branch integrals below. Because of the PLL structure of the
lower, Q branch, we see that the Q integral converges to 0 as
the loop locks, leaving the I branch locked to the magnitude.
In Figure 23, we examine the behavior of post integration
filtering on the result, and we can see (especially in the lower
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Fig. 22. Output of ModelSim Simulation of FPGA based demodulator.
The oscillation frequency is 88 kHz. The normalized deflection amplitude
is 0.25. There is no offset in the signal level, but the phase of the signal
driving the deflection is 30◦ ahead of the in-phase (sine) mixing signal at
the beginning of the simulation. Note how the I and Q phases converge to
the magnitude and instantaneous phase, respectively.

Q plot) that a little bit of filtering removes a residual 2f0
frequency left over from imperfect integration.

VIII. EXAMPLE: SERVO SIGNAL DEMODULATION IN
HARD DISK DRIVES

Hard disk drives (HDD) provide a breadth of examples
of modulation and demodulation schemes used to encode
position. We can trace an evolution of demodulation method-
ologies from looking at different methods we might apply to
the same basic signals. Modern disk drives use what is called
sectored servo, which means that the position information is
multiplexed with user data in periodic samples along the
track known as servo bursts. The servo burst itself will
consist of several fields: a clock sync field, servo position
information, and an edit gap (Figure 24). The clock sync field
is merely a pattern of alternating magnetic polarities along
the track. These fields are consistent across the cross-track
direction. This allows the PLL to minimize any phase drift
that may have occurred during the data portion of the track.
After that, there are magnetic patterns offset from each other
on opposite sides of the track center. A highly simplified
view of this for our discussion is shown in Figure 25. The
top drawing shows the relative position of the read/write head
relative to the offset position information. The goal is to track
the center of the track and if the head is too far over one field
(A or B), then the return signal is larger for that portion, as
shown in the lower drawing.
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Fig. 23. Output of ModelSim Simulation of FPGA based demodulator.
The oscillation frequency is 88 kHz. The normalized deflection amplitude
is 0.25. There is no offset in the signal level, but the phase of the signal
driving the deflection is 30◦ ahead of the in-phase (sine) mixing signal at
the beginning of the simulation. This plot shows the effect of adding post
post integration filtering to the demodulator.

ASync BASync B

Fig. 24. The layout of an HDD track. The sync field allows the PLL to
recover its timing so that the fields can be detected at the right time. In this
simplified form, there are just A and B fields offset by half a track from the
track center. After the A and B fields comes the user data, which typically
comprises a much larger proportion of the track.

With the clock recovered, the servo processing portion
of the chip opens up windows for the A field and the B
field, separately. The output signals from the electronics are
illustrated in the lower drawing. We can see that when the
readback head is off to one side of track center (in this
illustration more towards A), that the corresponding readback
will produce a higher amplitude in the signals illustrated in
the lower drawing. Now, assuming that the clocking allows
us to separate the A “signal” from the B “signal”, we have
some options on how to extract their relative amplitude.
Figure 26 illustrates different methods for extracting the

amplitude of each field during its active window. The first
two methods, are the oldest used in HDD, and while they
are only active in the open clock window for the particular
field, are not coherent themselves. They both use a rectifier
to make the two-sided, zero-mean signal a one-sided signal.
The first (line (c)) uses peak detection, employing a circuit
that simply holds the highest value found in the window.
While this method largely ignores low level baseline noise,
it is highly susceptible to any noise that manifests itself
at the top of the peak. The next (line (d)) improves on
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Fig. 26. Common demodulation methods used in decoding disk drive
position bursts.

the noise immunity by integrating the signal over the time
window. The idea of this rectify and integrate method is
that the effect of random noise is reduced compared to that
of the signal. However, since the signal was rectified, noise
that was previously zero mean now has a DC bias rather
than being averaged out. Rectify and integrate was generally
considered an improvement on peak detection, but required
a more complex circuit.
We can remove the rectification of noise by multiplying

the signal in the window with a square wave aligned with
the pulses. We see (in line (e)) that this rectifies the servo
signal while the noise can still average towards its zero mean
level. Besides requiring a coherent square wave, the main
downside of this is that the square wave mixing admits all
harmonics of returned servo burst signal. Finally (in line (f))
we see that if we are selective about which harmonics we use
in the mixing signal, we can remove some of the nonlinear
distortion while capturing the best features of the servo signal
[46], [47], [48]. The ideal signal shapes might be sinusoidal,
but the noise free actual signals resemble those of Figure 27
which includes first, third, and fifth harmonics. The addition
of significant noise reveals the tremendous difference in the
performance of the different schemes (Figure 28). The effect
on the noise admitted into the system can be seen in Figure
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Fig. 27. Ideal servo burst with no noise. Note that beyond the fundamental,
the signal shape contains third and fifth harmonics.
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Fig. 28. deal servo burst with significant noise. Note that beyond the
fundamental, the signal shape contains third and fifth harmonics. We see
how coherent demodulation adds significant immunity to noise in the servo
position signal.

29, where moving from rectify and integrate down to mixing
with the fundamental sine wave dramatically drops the noise
passed into the system. Adding extra harmonics (the custom
harmonic curve) tweaks this result to be a little bit better.

IX. EXAMPLE: OPTICAL DISK PRECISION CLOCKING:
DVD+RW

On optical drives such as CDs and DVDs, there are two
main servo loops, one to maintain focus of the optical beam
and the second to keep that beam over the correct track.
However, because the tracks are distinguished by physical
features on the disk, the tracking loop has the potential
for much higher sample rates than are found in the HDD
loops described in Section VIII. In these problems the more
difficult problem is that of establishing sub-bit accurate
timing down the track for making rewritable optical disks
that are compatible with the ubiquitous DVD ROM format.
The latter has none of the edit gaps mentioned in the
discussion of HDDs in Section VIII, and so being able to
write new data in the correct down-the-track location requires
precise synchronization with sub-bit accuracy.
The essential technology is a high frequency, high fidelity

reference signal embedded into the disk surface itself, as
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illustrated in Figure 31. With this so-called high frequency
wobble, a digital phase-locked loop can correct the timing
to enable read/write operations without edit gaps. A gapless
edit of a 6T pattern into a 4T-8T pattern is shown in
Figures 32–34. The lack of jumps in phase errors in a
clock derived from the data (Figure 33) as well as the lack
of any 5T or 7T patterns in the histograms of Figure 34
indicate a bit perfect edit, where T is the bit clock period.
The continuous nature of the high fidelity reference signal
simplified the PLL design which enabled the DVD+RW
(and DVD+R) formats [49], [50], [51], [52]. By having a
continuous, high fidelity reference clock signal across the
entire length of the track, the internal timing of the read

Fig. 31. High frequency wobbles used in the DVD+RW optical disk format.
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Fig. 32. DVD+RW, gapless edit. A 6T pattern spliced into a 4T-8T pattern.
This represents the time response at the edit-in point.
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This represents the phase error for a data clock generated from the data.
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and write circuits was within fractions of a bit (allowing the
desired read/write functionality with no edit gaps. By the
year 2013 the DVD+RW and DVD+R businesses enabled by
this amounted to 25% of a $559M market (according to a
website called Storage.com which now has been re-purposed
for finding self-storage units).

X. EXAMPLE: LASER INTERFEROMETRY

This section is largely excerpted from the author’s A
Tutorial on Laser Interferometry for Precision Measurements
[53]. The full equation derivations are in that reference, but a
few key points will be used here to describe laser interferom-
eters in the context of demodulation systems. The operation
of an interferometer depends upon optics performing some
of the same equations that we have been discussing above.
It is in understanding the relationship of the optics equations
that we see that the optics are performing a demodulation
of two signals at the same frequency interfering with each
other and therefore producing a phase difference that we can
detect with something akin to a Costas loop.
The basic Michelson interferometer (Figure 35) uses a half

silvered mirror to split a monochromatic light source into two
beams. Each beam reflects off of a mirror, to be recombined
at the half-silvered mirror. The recombined beam contains an
interference pattern that changes when either of the mirrors
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move. Keeping one mirror fixed allows one to attribute all
of the interference pattern changes to motion of the other
mirror.
Many texts show the an interference pattern such as the

one in the far left of Figure 36. However, in the absence of
the beam being cropped, the detector will see a collimated
beam on its center axis. Typically, this is modeled as a
Gaussian beam and as the measure mirror moves the intensity
of this pulse will vary, as shown in the right three figures of
Figure 36. The detector then acts to integrate the intensity
of the beam over its spatial extent, and – assuming the
integration is faster than the change in the interference
pattern – this integrated intensity can be used to measure
distance, modulo the wavelength of the laser used.
The Michelson interferometer is one of the most basic

models of interferometry available. It is not a practical inter-
ferometer, in that there are significant issues with the actual
implementation. However, it provides an easy to understand
conceptual model for understanding precision measurement

Typical interference
pattern in texts

More accurate variation of central
Gaussian lobe with interference

Fig. 36. Effects of interference on detector. On the far left is the typical
diagram one sees in books. However, the banding is typically caused by
the beam being cropped and not the effect of the interferometry. A better
picture comes from the three diagrams on the right, in which the intensity
of the central Gaussian lobe is modulated by the interference pattern.
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interferometers. Generally, for every imperfection of the
Michelson interferometer, there is a practical fix that expands
the range of usefulness of the interferometer [53]. Each of
these fixes essentially returns the interferometer back to a
more ideal Michelson behavior.
We start our analysis of the Michelson IF equations by

looking at Figure 37. For our purposes, the source beam
can be considered to originate at position 1, right before
contact with the half silvered mirror. At the mirror, half of
the beam is reflected to the reference mirror (path r2-r3-r4)
where it is reflected back towards the half silvered mirror. At
this interface, half of the beam is passed through to position
5, while half reflects back to the source. Meanwhile, the
transmitted portion of the beam goes to the measurement
mirror (path m2-m3-m4) and reflects back. At the half
silvered mirror, half of the measure beam is reflected to
position 5, while half passes back to the source. We are
concerned with the two beams that meet at position 5 and
are imaged on the detector.
A few things are important to understand interference as it

is used in our measurements. First, since both the reference
beam and the measure beam originate from the same laser,
they are coherent with each other. Second, every time a beam
goes through a reflection, it undergoes a 180◦ phase shift. A
look at the diagram of Figure 37 indicates that each beam
at position 5 has gone through 360◦ in phase shifts and
thus they are still in phase with each other. Third, by the
time both beams reach position 5, their amplitude has been
reduced to 1

4 of their original amplitude. (This is fixed in
practical interferometers via use of polarizing beam splitters,
quarter wave plates, corner cubes, and a second frequency
so that a far greater percentage of the beam power hits the
detector [53].) Conceptually, if the reflection/transmission is
exactly 50/50 and if the mirrors are perfectly aligned, then
both beams add through linear superposition and have the
same amplitude. Thus, we can attribute the variation at the
detector to interference.
The equations for the interference pattern are derived

in classic optical texts [54], [55] from application of the
vector electromagnetic wave equations [56], [57]. Consider
the electric field of the source beam at position 1:

Ez,source(z, t) = A cos(kz − ωt+ φ) (29)

where z is the direction of travel, k = 2π
λ is the wave number,

λ is the wavelength of the light, and A is the amplitude of the
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beam. From position 1, the reference beam travels a distance
Lref = 2d1 to get back to position 5, while the measure
beam travels a distance Lmeas = 2d2 to get back to position
5. If we consider position 1 to be z = 0, then the two beams
are thus,

Eref (t) =
A

4
cos(kLref − ωt+ φ) (30)

for the reference beam and

Emeas(t) =
A

4
cos(kLmeas − ωt+ φ) (31)

for the measure beam. Through linear superposition, the
beams add, so that the electric field of the combined beams
at position 5 is

Etot(t) = A
4 [cos(kLref − ωt+ φ)
+ cos(kLmeas − ωt+ φ)] .

(32)

A word about notation is useful here. Normally, when one
is working with wave equations [56], [57], the equations are
set up as vector quantities along some frame of reference.
This works very well in analysis of plane equations, point
sources, etc. but in an interferometer, the direction of the
beams are switched so often that keeping track of all the
vector frames becomes confusing. For this tutorial, we will
assume that the source electric field is in the X-Y plane,
and the source magnetic field is rotated 90◦ in that plane.
This means that the Poynting vector which describes the
energy density is in the Z direction. Every time we go
through a reflection, polarizer, or beam splitter, the reference
frame is changed, but our signals will end up so that the
Poynting vector is normal to the detector plane. For the sake
of simplicity, we will leave off the unit vector designations
on the equations.
The detector is sensitive to signal intensity, not amplitude,

and we can calculate this from the Poynting vector. If we
assume that the electric field is in the x direction and the
magnetic field is in the y direction, then

Htot(t) = A
4

√
ε
μ [cos(kLref − ωt+ φ)

+ cos(kLmeas − ωt+ φ)] .
(33)

We now have two choices to simplify this: proceed with
trigonometric identities or switch gears to saying that Equa-
tions 32 and 33 are the real parts of a complex exponential
notation. For pedagogical purposes, we will plug through the
trigonometric equations here. With the polarizations we have
assumed, the Poynting vector, P(t), will be in the direction
normal to the detector with

Ptot(t) = �Etot(t)× �Htot(t)

=
A2

16

√
ε

μ
[cosα+ cosβ]

2 (34)

=
A2

4

√
ε

μ

[
cos2 α+ cos2 β + 2 cosα cosβ

]
(35)

where α = kLref −ωt+φ and β = kLmeas−ωt+φ. With
this and some trigonometric identities, we end up with

cos2 α =
1 + cos 2(kLref − ωt+ φ)

2
, (36)

cos2 β =
1 + cos 2(kLmeas − ωt+ φ)

2
, and (37)

2 cosα cosβ = cos (k(Lmeas + Lref )− 2ωt+ 2φ)
× cos (k(Lmeas − Lref )) .

(38)
Putting these all together,

Ptot(t) =
A2

32

√
ε

μ
[1 + cos 2(kLref − ωt+ φ)

+1 + cos 2(kLmeas − ωt+ φ)

+2 cos (k(Lmeas + Lref )− 2ωt+ 2φ)

+ 2 cos (k(Lmeas − Lref ))] (39)

If we average over an integer number of periods, T =
1
f = 2π

ω then the time varying portion integrates out, leaving
only the DC portion:

Ptot,avg = A2

16

√
ε
μ [1 + cos (k(Lmeas − Lref ))] (40)

This rationale should remind the reader of the high precision
IQ demodulator of Section VII. As a practical matter, the
laser frequency is so much faster than the integration time
of our detector that we are always getting the “DC portion”.
Thus, the relationship that is most commonly used for this
type of interferometer is that for the intensity:

I ∼ K [1 + cos (k(Lmeas − Lref ))] W/m2 (41)

This is often rewritten in terms of the wavelength, λ, as

I ∼ K
[
1 + cos

(
2π
λ (Lmeas − Lref )

)]
W/m2 (42)

This provides the power density at the detector in
Watts/m2. The detector integrates the energy density (in-
tensity) over the detector surface. Thus, it is not the pattern
on the surface that matters so much as the amount of intensity
on that surface. Equation 41 gives the density at a given
point. In fact for a highly collimated beam, the distribution
is likely Gaussian and effect of a change in Lmeas is to cause
the height of this Gaussian distribution to rise and fall. If all
other variables are held constant, one can measure a change
in distance by counting the passing of these light and dark
times. From Equation 41 we see that we are still missing
an ability to discern direction of motion. This is fixed in a
single frequency IF by splitting the the beam and adding a
phase delay to one portion, thus allowing for in-phase and
quadrature demodulation (IQ), again reminiscent of Section
VII.
We start with the reminder that all position measurements

with an interferometer are relative. The fringes give a change
in position from some starting position. This is analogous to
trying to measure position from velocity measurements: one
must assume a starting position.
IF measurements rely on knowing the wavelength of light,

λ, and the wavelength being stable. This is why commercial
interferometers did not emerge until lasers were invented.
It is important to know that as pressure, temperature, hu-
midity,and gas composition change, so does λ. Thus, an IF
system is making measurements with a somewhat elastic
ruler.
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All the modifications to the Michelson interferometer
discussed thus far essentially are designed to desensitize the
interferometer to non-ideal behavior and restore the accuracy
of Equation 42. However, even when things are properly
aligned, the interferometers described so far operate in the
baseband. They use a single frequency of light, also known
as homodyne interferometry, and the “difference” between
measure and reference only shows up as a baseband phase
and Equation 42 is a variation away from DC. DC detection
is slow and suffers from 1

f and other noise in the detectors,
mainly signal intensity variations (due to air turbulence or
accumulated contaminants on mirror and optic surfaces)
being indistinguishable from position changes.
Borrowing from the world of radio communications, it

is more advantageous if the interference shows up at some
intermediate frequency. To achieve this, modern IF mea-
surement systems typically operate with multiple wave-
lengths [58], where the interference pattern is not a baseband
signal, but in fact an AC signal, as diagrammed in Figure 38.
Thus, distance becomes a measurement of the difference
between two signals, one of which (known as the mea-
surement signal) is modulated by the moving object, while
the other (known as the reference signal) is generally fixed.
The reference signal is usually composed of the difference
between the two frequencies before one of them has been
modulated, but can also be another modulated signal to create
a differential measurement between two moving mirrors.
Assuming the two laser frequencies are ω1 and ω2, we get

the equation for the Poynting vector [53]. If the measurement
mirror is moving, then that movement will appear as a
Doppler Shift in ω1 = 2πf1, so that ω1 =⇒ ω1 + Δω1

becomes:

PIF,LP (t) ≈ A2

2

√
ε

μ
[1+ (43)

cos (k1Lmeas − k2Lref2 − (ω1 +Δω1 − ω2)t)] .
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In the end, the optics have generated an intensity that is
proportional to a 1+cos(θ) where θ is periodic and related to
the distance between the reference reflector and the moving
reflector. The fundamental accuracy is inversely proportional
to the laser wavelength (λ).
In Equation 43, θ becomes a shift in the frequency differ-

ence between the two signals, and results in new oscillatory
signal that once again needs to be demodulated. To be an
instrument for measuring distance and velocity we need
devices for counting either peaks in intensity (a peak finding
demodulator, Figure 39) or to accurately and quickly measure
the phase of the intensity signal (Figure 40). Note how Figure
40 closely matches the Costas loop of Figure 16. The peak
counter (peak finding demodulator) has an accuracy limited
to half the wavelength, while the IQ demodulator is capable
of much finer resolution.
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Fig. 42. Wafer stage system measured with interferometer.

One of the great benefits of precision interferometry for
position measurement is that because the measurements are
done at a distance, multiple axes can be measured with
the same system, by splitting the laser beam and directing
it off of different surfaces and back to multiple receivers.
This can be seen in the two-axis configuration shown in
Figure 41, where a single beam is split and directed at
polarizing beam splitter based interferometers. Each of these
beams is reflected off of a planar mirrors on the side of a
moving stage, resulting in position measurements for the x
and y axes.
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The bulk of interferometers systems are used in the IC
photolithography industry [59], [60]. Here, very precise
machines move an X-Y stage under an optical column. What
is critical is the location of the stage relative to the optical
column, and the repeatability of this measurement. So these
systems use laser interferometers to measure the X and Y
positions of the stage and the column, as well as the pitch and
yaw of these items. Some even measure the vertical direction
of the stage. Figure 42 shows the basic setup without the
optical column which would obscure the stage.
This section has gone through more math than most

of the others combined, but it shows that at the end, to
a clean position and velocity signal, we again need to
understand modulation and demodulation. A huge amount
of the improvement in the interferometry measurements are
made by an understanding of the optical paths, but at the
end, the final bit of accuracy is limited by signal conversion
done in the electronics. Mixing (multiplying) and digitally
integrating/low-pass filtering a signal usually requires at least
10 samples per second. If we consider the upper range of
FPGA fabric circuitry to be around 500 MHz, then we can
consider processing a 50 MHz signal, but only if we use
only one clock cycle per sample. More reasonably, we might
expect a heavily pipelined algorithm to have 10 cycles of
signals up to 5 MHz. Faster signals would require either
custom signal processing circuitry or analog processing for
the front end.

XI. SUMMARY

Modulated signals are rarely considered a main part of
control design. It is rare that the carrier itself has significant
information for the loop. It is probably for this reason
that this subject is not well studied by control engineers.
However, the form of modulation, and the method by which
we demodulate it can have a significant effect on the quality
of the demodulated signal returned to the loop.
This tutorial has given a brief, non-exhaustive overview of

demodulation methods for modulated signals found in con-
trol applications. The emphasis was placed on a conceptual
understanding, but with a view to how to execute the different
demodulation computations. There may well be a wide vari-
ety of cases for which the simplest modulation/demodulation
– such as amplitude or pulse encoding demodulated with
a simple rectifier and low-pass filter are sufficient. This is
really a requirements question: when the speed and accuracy
of the demodulation scheme is an order of magnitude above
the needs of the loop, there is no reason to do anything more
sophisticated. However, in understanding the more advanced
methods, we have the option to speed and clean up the sensor
signals before they get into the feedback loop, thus avoiding
the limitations imposed by Bode’s Integral Theorem [11],
[61].
The demodulation methods we see often have a lot of

commonality. An understanding of Fourier integrals is ex-
tremely helpful, but to make them practical, we have to
seriously look at the information content of the signals and
the computational structures needed to extract them. The

payoff here is the potential to dramatically lower the sensor
noise (and nonlinearities) injected into a loop, as well as
dramatically speeding up the acquisition of the signal. As
we know from our earliest controls principles that sensor
noise goes right through to the output [62], [63], the extra
work has a direct payoff.
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