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Abstract— Laser interferometers have found wide usage in
a variety of precision measurement applications. The ability
to gain precise position information with minimal change to
the dynamics of the device being measured has a large set of
advantages. This allows interferometer systems to be used in
feedback loops for precision systems. This paper presents a
tutorial on laser interferometers, their use in precision motion
feedback systems, the issues faced by such systems, and some
of the solutions that have been applied to these issues.

I. INTRODUCTION

Michelson type laser interferometers measure distance by

measuring the phase difference between two portions of the

same beam, one sent to a reflector at a fixed distance, and

one sent to a measurement surface at an unknown distance.

When the two signals are recombined in the interferometer,

the resulting phase is related to the distance of the reflected

surface from the interferometer. As the distance changes,

so does the phase of the combined signal. The utility of

these methods are that the measurement can be made over

long distances while maintaining accuracy. However, as the

needed accuracy of the target applications has increased,

interferometers have been adjusted to desensitize them to

an increasing number of effects.

Most engineers hear about optical interference in col-

lege physics and promptly forget about them. However,

for the group of engineers and scientists that keep using

them, optical interference provides highly precise and yet

remote position measurements. The ability to resolve small

features, down the the fraction of the wavelength of light

(390 to 700 nm [1]), as well as the non-contact nature of

the measurements are inherent advantages. Because of this

interferometric measurements are used in fields that go from

astronomy to oceanography, from chemistry and physics to

laser tape measures and laser mice for computers [2].

For this tutorial, we will restrict our discussion to laser

interferometers (rather than so called white light interfer-

ometers). Furthermore, the interferometers (IFs) we discuss

will largely focus on those taking the form of the Michelson

interferometer [3], [4], [5], but using a laser light source.

While the original Michelson interferometer is not a prac-

tical design for reasons that we will discuss, it provides a

clean conceptual model with a very understandable idealized

behavior. Our approach will be to describe the idealized

behavior of the Michelson in detail, and then show how

*Russell Loughridge is with the Agilent Technologies Nano Position
and Measurement Division, Cleveland, OH 44060 USA, (847) 944-6262;
russell loughridge@agilent.com)

**Daniel Y. Abramovitch is a principal project engineer in the Molecular
Imaging Lab at Agilent Laboratories, 5301 Stevens Creek Blvd., M/S: 4L-
IC, Santa Clara, CA 95051 USA, danny@agilent.com

practical issues arise which cause design changes. Still, the

net effect of these design changes is to cancel out the non-

ideal behavior, so as to restore the instrument’s behavior back

to the original model.

From a simplistic control design view, an interferometer is

simply a complicated, expensive sensor, that provides highly

accurate, non-contact measurements of a certain number of

axes at a high rate for a certain cost. However, we believe

that understanding how precision interferometers operate will

give control designers much better insight into how to use

these devices and how to configure them for maximum

utility.

The rest of this paper will proceed as follows: Sec-

tion II will introduce the Michelson Interferometer and

derive the idealized behavior from the electromagnetic wave

equations [6]. Factors that make the original Michelson

interferometer impractical and fixes to them are discussed

in Section III. In Section IV, we introduce two frequency,

or heterodyne interferometry. Finally, in Section V, we show

how the interferometer fringes on the optical detectors are

turned into position measurements.

With the basic concepts explained, we describe the history

of and uses of precision interferometers in Sections VI

and VII. We then return to issues with modern interferom-

eters in Section VIII. and cover their use in closed loop

servo systems in Section IX. We close with a discussion

of turbulence in Section X, one of the more difficult and

pervasive problems with interferometry. This will tie in well

with the last paper in the tutorial session which will discuss

a closed-loop method of combating turbulence using a multi-

segment detector and an Extended Kalman Filter [7].

II. THE MICHELSON INTERFEROMETER
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Fig. 1. Basic Michelson Interferometer

The basic Michelson interferometer (Figure 1) uses a half

silvered mirror to split a monochromatic light source into two
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Typical interference
pattern in texts

More accurate variation of central
Gaussian lobe with interference

Fig. 2. Effects of interference on detector. On the far left is the typical
diagram one sees in books. However, the banding is typically caused by
the beam being cropped and not the effect of the interferometry. A better
picture comes from the three diagrams on the right, in which the intensity
of the central Gaussian lobe is modulated by the interference pattern.
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Fig. 3. Some details on the beams of a Michelson interferometer

beams. Each beam reflects off of a mirror, to be recombined

at the half-silvered mirror. The recombined beam contains an

interference pattern that changes when either of the mirrors

move. Keeping one mirror fixed allows one to attribute all

of the interference pattern changes to motion of the other

mirror.

Many texts show the an interference pattern such as the

one in the far left of Figure 2. However, in the absence of

the beam being cropped, the detector will see a collimated

beam on its center axis. Typically, this is modeled as a

Gaussian beam and as the measure mirror moves the intensity

of this pulse will vary, as shown in the right three figures of

Figure 2. The detector then acts to integrate the intensity

of the beam over its spatial extent, and – assuming the

integration is faster than the change in the interference

pattern – this integrated intensity can be used to measure

distance, modulo the wavelength of the laser used.

The Michelson interferometer is one of the most basic

models of interferometry available. It is not a practical

interferometer, in that there are significant issues with the

actual implementation. However, it provides an easy to

understand conceptual model for understanding precision

measurement interferometers. What we will find is that for

every imperfection of the Michelson interferometer, there

is a practical fix that expands the range of usefulness of

the interferometer. In the course of this tutorial we will

go through a “problem-fix” approach. Each of these fixes

essentially returns the interferometer back to a more ideal

Michelson behavior.

We start our analysis of the Michelson IF equations by

looking at Figure 3. For our purposes, the source beam can

be considered to originate at position 1, right before contact

with the half silvered mirror. At the mirror, half of the beam

is reflected to the reference mirror (path r2-r3-r4) where it

is reflected back towards the half silvered mirror. At this

interface, half of the beam is passed through to position

5, while half reflects back to the source. Meanwhile, the

transmitted portion of the beam goes to the measurement

mirror (path m2-m3-m4) and reflects back. At the half

silvered mirror, half of the measure beam is reflected to

position 5, while half passes back to the source. We are

concerned with the two beams that meet at position 5 and

are imaged on the detector.

A few things are important to understand interference as it

is used in our measurements. First, since both the reference

beam and the measure beam originate from the same laser,

they are coherent with each other. Second, every time a beam

goes through a reflection, it undergoes a 180◦ phase shift. A

look at the diagram of Figure 3 indicates that each beam at

position 5 has gone through 360◦ in phase shifts and thus

they are still in phase with each other. Third, by the time both

beams reach position 5, their amplitude has been reduced to
1

4
of their original amplitude. If the reflection/transmission is

exactly 50/50 and if the mirrors are perfectly aligned, then

both beams add through linear superposition and have the

same amplitude. Thus, we can attribute the variation at the

detector to interference.

The equations for the interference pattern are derived in

classic optical texts [5], [8] from application of the vector

electromagnetic wave equations [6], [9]. Consider the electric

field of the source beam at position 1:

Ez,source(z, t) = A cos(kz − ωt + φ) (1)

where z is the direction of travel, k = 2π
λ

is the wave number,

λ is the wavelength of the light, and A is the amplitude of the

beam. From position 1, the reference beam travels a distance

Lref = 2d1 to get back to position 5, while the measure

beam travels a distance Lmeas = 2d2 to get back to position

5. If we consider position 1 to be z = 0, then the two beams

are thus,

Eref (t) =
A

4
cos(kLref − ωt + φ) (2)

for the reference beam and

Emeas(t) =
A

4
cos(kLmeas − ωt + φ) (3)

for the measure beam. Through linear superposition, the

beams add, so that the electric field of the combined beams

at position 5 is

Etot(t) = A
4

[cos(kLref − ωt + φ)
+ cos(kLmeas − ωt + φ)] .

(4)

A word about notation is useful here. Normally, when one

is working with wave equations [6], [9], the equations are set

up as vector quantities along some frame of reference. This

works very well in analysis of plane equations, point sources,

etc. but in our interferometer, the direction of the beams are
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switched so often that keeping track of all the vector frames

becomes confusing. For this tutorial, we will assume that

the source electric field is in the X-Y plane, and the source

magnetic field is rotated 90◦ in that plane. This means that

the Poynting vector which describes the energy density is

in the Z direction. Every time we go through a reflection,

polarizer, or beam splitter, the reference frame is changed,

but our signals will end up so that the Poynting vector is

normal to the detector plane. For the sake of simplicity, we

will leave off the unit vector designations on the equations.

The detector is sensitive to signal intensity, not amplitude,

and we can calculate this from the Poynting vector. If we

assume that the electric field is in the x direction and the

magnetic field is in the y direction, then

Htot(t) = A
4

√

ǫ
µ

[cos(kLref − ωt + φ)

+ cos(kLmeas − ωt + φ)] .
(5)

We now have two choices to simplify this: proceed with

trigonometric identities or switch gears to saying that Equa-

tions 4 and 5 are the real parts of a complex exponential

notation. For pedagogical purposes, we will plug through the

trigonometric equations here. With the polarizations we have

assumed, the Poynting vector, P(t), will be in the direction

normal to the detector with

Ptot(t) = �Etot(t) × �Htot(t)

=
A2

16

√

ǫ

µ
[cos α + cos β]

2
(6)

=
A2

4

√

ǫ

µ

[

cos2 α + cos2 β + 2 cos α cos β
]

(7)

where α = kLref −ωt+φ and β = kLmeas −ωt+φ. With

this and some trigonometric identities, we end up with

cos2 α =
1 + cos 2(kLref − ωt + φ)

2
, (8)

cos2 β =
1 + cos 2(kLmeas − ωt + φ)

2
, and (9)

2 cos α cos β = cos (k(Lmeas + Lref ) − 2ωt + 2φ)
× cos (k(Lmeas − Lref )) .

(10)

Putting these all together,

Ptot(t) =
A2

32

√

ǫ

µ
[1 + cos 2(kLref − ωt + φ)

+1 + cos 2(kLmeas − ωt + φ)

+2 cos (k(Lmeas + Lref ) − 2ωt + 2φ)

+ 2 cos (k(Lmeas − Lref ))] (11)

If we average over an integer number of periods, T =
1

f
= 2π

ω
then the time varying portion integrates out, leaving

only the DC portion:

Ptot,avg = A2

16

√

ǫ
µ

[1 + cos (k(Lmeas − Lref ))] (12)

As a practical matter, the laser frequency is so much faster

than the integration time of our detector that we are always

getting the “DC portion”. Thus, the relationship that is most

commonly used for this type of interferometer is that for the

intensity:

I ∼ K [1 + cos (k(Lmeas − Lref ))] W/m2 (13)

This is often rewritten in terms of the wavelength, λ, as

I ∼ K
[

1 + cos
(

2π
λ

(Lmeas − Lref )
)]

W/m2 (14)

This provides the power density at the detector in

Watts/m2. The detector integrates the energy density (in-

tensity) over the detector surface. Thus, it is not the pattern

on the surface that matters so much as the amount of intensity

on that surface. Equation 13 gives the density at a given

point. In fact for a highly collimated beam, the distribution

is likely Gaussian and effect of a change in Lmeas is to cause

the height of this Gaussian distribution to rise and fall. If all

other variables are held constant, one can measure a change

in distance by counting the passing of these light and dark

times. From Equation 13 we see that we are still missing

an ability to discern direction of motion. This is fixed in a

single frequency IF by splitting the the beam and adding a

phase delay to one portion, thus allowing for in-phase and

quadrature demodulation (IQ).

III. ISSUES AFFECTING MICHELSON INTERFEROMETERS

Michelson interferometers are easy to understand but face

some very practical issues. The first is that the half silvered

mirror works through amplitude splitting and this causes

beam power to be lost. Looking at Figures 1 and 3, we

see that both the beam from the reference reflector and the

beam from the moving reflector will be split again, resulting

in only half of the amplitude of each showing up on the

detector. The rest the light will be sent back into the laser,

causing interference with the laser.

Furthermore, the Michelson interferometer is very sensi-

tive to mis-alignment and producing an exact 50-50 ampli-

tude split is difficult.

Polarizing Beam Splitter

p polarization

s polarization

Fig. 4. A polarizing beam splitter (PBS) allows light in one polarization
(P) to pass through unhindered while it reflects light in the orthogonal (S)
polarization.

To get around this, most Michelson style interferometers

work with multiple light polarizations and a polarizing beam
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splitter (PBS), diagrammed in Figure 4. A polarizing beam

splitter allows light in one polarization (P) to pass through

unhindered while it reflects light in the orthogonal (S)

polarization. Aligned with a 45◦ angle to the incoming beam,

it results in the beam being split into two directions, each of

a single linear polarization. The great advantage of using

multiple polarizations and a PBS is that unlike the half

silvered mirror, there is little loss in optical power.

With the proper control of the polarization states of the

source light, one could split it into two components and com-

bine them with minimal loss at the equivalent of position 5

in Figure 3, except that in place of the half silvered mirror is

the PBS. The key then is controlling the polarization of each

of the split beams so that they are in matching polarizations

when they arrive. This is done with a combination of mirrors,

cube corners (to be described below), and wave plates.

Quarter-
Wave
Plate

Linear
Polarization

In

Circular
Polarization

Out

Optic
Axis

Fig. 5. Wave plates are used to change the polarization state of light.
(Recreated from [10].)
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λ/4

λ/4

Reflector
on Moving

Object

Polarizer
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Fig. 6. Interferometer with Polarizing Beam Splitter (PBS) and quarter
wave plates.

Wave plates are optical components that slow one of the

polarization states of the incident light, relative to the other.

They are typically made of birefringent crystal, where the

birefringence is characterized by the difference in the indices

of refraction of the two axes of the crystal, ∆n. If light enters

with equal polarization in two axes, one of those axes will

have a phase delay given by [11]:

Γ =
2π∆nL

λ0

(15)

where λ0 is the wavelength of the light in vacuum. By choos-

ing the length, L, of the crystal, a chosen phase delay may be

imparted. Typical values for L result in a quarter wave plate,

which results in a 90◦ phase lag in one of the polarization

states (relative to what it was when it entered the wave plate)

and a half wave plate, which retards one polarization state

by 180◦. As such, the quarter wave plate, often designated in

a diagram by λ
4

, can be used to transform linearly polarized

light to circularly polarized light and vice-versa. In fact, a

typical optical path sequence that is seen in interferometers is

that light with S polarization passes through a quarter wave

plate (giving it circular polarization), is reflected (reversing

the direction of the circular polarization), and passes back

through the quarter wave plate (giving it P polarization).

These polarization changes allows portions of the beam to

either pass directly through a PBS or be diverted by it.

One more needed component is a polarizer, which selects

out a particular polarization of light. One can think of any

polarization vector as being the resultant of two other vectors.

For example, vertical, S, polarization can be viewed as the

resultant of equal polarization vectors at ±45◦. Likewise,

horizontal, P , polarization can be viewed as the resultant of

equal polarization vectors at 45◦ and at 135◦. Sending these

two beams through a polarizer that selected out polarizations

at 45◦ would result in the 45◦ components of the S and P
light being selected out. Polarizers will often be seen right

before the detectors in an interferometer configuration to

select out the components that can be interfered with each

other.

Figure 6 shows an interferometer configuration using a

polarized light source, a polarizing beam splitter, quarter

wave plates, and plane mirror reflectors. Say we have a

source beam with equal components of polarization in S

and P. Upon striking the interface of a PBS, the S polarized

component will be diverted to reference mirror, while the

P polarized component will pass on to the measure mirror.

To pass the return beams to a location distinct from the

laser source, the beams exiting the PBS are passed through a

quarter wave plate resulting in a change of polarization from

linear to circular. Reflection off of the plane mirror results in

a reversal of the direction of circular polarization and both

beams pass through the quarter wave plate again. The net

result is that the reference beam returns to the PBS with

a P polarization while the measurement beam returns to the

PBS with an S polarization. The properties of the PBS cause

both of these beams to combine and exit the PBS in a new

direction. Both measure and return beams are then passed

through a polarizer, which selects out the common linear

polarization between the two. This is what the detector sees.

This is all an improvement, but we have not solved the

angle sensitivity problem. One solution that can be used

when the measure mirror is only moving along a single axis

is to use a corner cube or retroreflector. A two dimensional
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Fig. 7. Planar corner cube (retroreflectors). Actual retroreflectors are built
in 3 dimensions, but the concept can be diagrammed well in two.

diagram is shown in Figure 7.

The corner cube/retro-reflector has the unique property

that it returns light back along an axis parallel to the

axis of the incident beam, independent of the angle of the

retroreflector. This can be seen in the simple geometry of

Figure 7. Ideally, the mirrors on our two dimensional cube

corner would be at ±45◦ from the incoming beam direction.

A variation in the alignment of the cube corner would not

result in a different direction for the reflected beam, but

would result in a beam that was translated a small amount

with respect to its original axis. As long as this translation

is small relative to the size of the detector, it is not an

issue. However, unlike a plane mirror reflector, when the

cube corner translates side to side (or up or down), the

return beam translates twice as far in the same direction.

This characteristic reduces the allowable lateral motion of

the reflector to about 1/4 of the beam’s diameter (about ±1.5
mm for a 6 mm beam diameter) so there is always about 50%

overlap with the reference beam (the actual required overlap

depends on the receiver’s sensitivity). For typical precision

systems, this straightness of travel requirement is usually not

an issue.

Reference
Reflector

Detector

d1

d2

Reflector
on Moving

Object

Note: Beams have been
displaced for clarity.

Laser
Source

Polarizing
Beam
Splitter

Polarizer

Fig. 8. Interferometer with Polarizing Beam Splitter (PBS) and corner
cubes.

The corner cube also allows the reflected beam to be

rerouted to a different portion of the PBS. This offset in the

beams (known as Offset Beam Interferometry) can be used to

avoid sending return laser beams back into the laser source.

The example in Figure 8 uses two corner cubes to route the

beam to a different location so that the detector and the laser

source do not have to be coincident. The reference beam with

S polarization is reflected to the reference reflector and back

to the PBS with the same S polarization. The measure beam

with P polarization passes through the PBS and returns with

the same polarization and passes through the PBS. In order

to combine the two return beams, we need to select out the

common polarizations of the two beams with a polarizer.

Plane
Reflector

Quarter-wave
Plate

Note: Beams have been
displaced for clarity.

Detector

Laser
Source

Polarizer

Fig. 9. Laser beam paths in a two-pass plane mirror interferometer (PMI)

As noted, corner cubes are restricted to one direction

of movement. To allow the measurement surface to move

in multiple directions, a Plane Mirror Interferometer (PMI)

must be used. In order to provide angular insensitivity, the

measure beam is offset using a corner cube and passed back

to the measure mirror again. Thus, to first order, variations

due to angles of the measure beam are undone by the second

pass.

Ref Wave Front Meas Wave Front

Beam Diameter

2θ

h

Detector

Fig. 10. Angle limit for single pass plane mirror reflector

Introduction of the Plane Mirror Interferometer signifi-

cantly increased the allowable angular range for the moving

mirror. With single pass interferometers, the allowable angu-

lar range is limited by Equation 16. The PMI (Figure 9)
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and 1/4 wave plates not shown)
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Added offset from 2nd pass

Mirror tilted at
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from being at 90
to the incoming beam

o

θ

Fig. 11. Angle limit for two pass plane mirror reflector

eliminates this restriction by automatically correcting any

wavefront tilt caused by angular movement of the mirror.

Any tilt from the first reflection off the mirror is untilted

by the second reflection because the cube corner on the

interferometer swaps the beam side to side and top to bottom.

AngularRange ∼
1

2
tan−1

3λ

4 × BeamDiam
(16)

This is derived from the fact that the wavefront tilt must be

less than λ over the beam diameter so a wavefront of the

measurement beam does not cross more than 1 wavefront of

reference beam. Using ≈ 3

4
λ is a reasonable limit to set.

Thus:

h sin(2θ) ≤
3

4
λ (17)

h cos(2θ) = BeamDiam (18)

h =
BeamDiam

cos(2θ)
(19)

tan(2θ) ≤
3

4

λ

BeamDiam
(20)

There still is a restriction on the mirror’s angular range, but

it is much less restrictive than a single pass configuration. For

example, with a 6 mm beam, a single pass IF has an angular

range of approximately 40 µRadians. With the same beam

a PMI would have an angular range of about 7.5 mRadians

when the distance to the measure mirror, Lmeas/2 = 100

mm, and about 1.5 mRadians when Lmeas/2 = 500 mm.

AngularRange ∼
1

2
sin−1

BeamDiam

4D
(21)

This is derived from knowing that beams should overlap

50% to get good signal (note high sensitivity receivers allow

operation with less than this, but general rule of thumb is to

have at least this much). Drawing out a ray trace diagram,

one can see that the final meas path output beam is offset

from its original position by 2×D×sin(2θ), where D is the

distance between the mirror and the interferometer and theta

is the difference between the mirror’s angle relative to the in-

coming beam and 90 degrees. (yes there are some additional

offsets caused by the beam path within the interferometer,

so this equation changes for small values of D, but for most

situations, D is large and the other term can be ignored). So

the requirement is:

2 × D × sin(2θ) ≤
BeamDiam

2
(22)

There are two additional consequences of having the

second pass in a PMI. One, the resolution of the measure-

ment is double that of a single pass interferometer, as any

motion of the mirror now causes two times the phase shift

in the measurement beam. Two, the maximum allowable

velocity is cut in half for two frequency interferometers,

which is discussed in Section IV and velocity requirements

in Section VIII-E below.

IV. TWO FREQUENCY INTERFEROMETRY
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Reflector
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Object
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Detector

Laser
Source
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f - (2 f )1 1± fΔ

Measurement
Detector

f2

f1 1± fΔ

f1 1± fΔ

f1

f2

Fig. 12. Two frequency (heterodyne) Michelson interferometer configura-
tion.

All the modifications to the Michelson interferometer

discussed thus far essentially are designed to desensitize the

interferometer to non-ideal behavior and restore the accuracy

of Equation 14. However, even when things are properly

aligned, the interferometers described so far operate in the

baseband. They use a single frequency of light, also known

as homodyne interferometry, and the “difference” between

measure and reference only shows up as a baseband phase

and Equation 14 is a variation away from DC. DC detection

is slow and suffers from 1

f
and other noise in the detectors,

mainly signal intensity variations (due to air turbulence or

accumulated contaminants on mirror and optic surfaces)

being indistinguishable from position changes.

Borrowing from the world of radio communications, it

is more advantageous if the interference shows up at some

intermediate frequency. To achieve this, modern IF mea-

surement systems typically operate with multiple wave-

lengths [12], where the interference pattern is not a baseband

signal, but in fact an AC signal, as diagrammed in Figure 12.

Thus, distance becomes a measurement of the difference

between two signals, one of which (known as the mea-

surement signal) is modulated by the moving object, while

the other (known as the reference signal) is generally fixed.

The reference signal is usually composed of the difference

between the two frequencies before one of them has been
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modulated, but can also be another modulated signal to create

a differential measurement between two moving mirrors.

In the interferometer described in [12], a single laser is

made to produce two frequencies of light in opposite circular

polarizations. In the case of a HeNe laser, this is done by

applying a magnetic field to the laser cavity which splits

the emission of Ne into two lines (known as the Zeeman

Effect [5]). We will consider f1 to be the measurement

frequency and f2 to be the reference frequency. As the two

frequency beam comes out, it is split into a portion that

goes to the IF and one that returns back to the measurement

system. The return portion is split into a portion to control

the laser power and one that images on an optical sensor.

This sensor, the Reference Sensor then sees

Eref1(t) = A cos(k1Lref1 − ω1t + φ) (23)

+A cos(k2Lref1 − ω2t + φ)

Again, we calculate the intensity by using the Poynting

vector to get the variation of intensity at the first detector:

Putting these all together,

Pref1(t) = �Eref1(t) × �Href1(t) =

A2

2

√

ǫ

µ

[

1 +
cos 2(k1Lref1 − ω1t + φ)

2

+ cos ((k1 − k2)Lref1 − (ω1 − ω2)t)

+ cos ((k1 + k2)Lref1 − (ω1 + ω2)t + 2φ)

+
cos 2(k2Lref1 − ω2t + φ)

2

]

(24)

Again, considering that the higher frequency terms are

filtered off, we are left with the baseband and difference

frequency term:

Pref1,LP (t) ≈
A2

2

√

ǫ

µ
[1+ (25)

cos ((k1 − k2)Lref1 − (ω1 − ω2)t))]

This will provide our detection frequency to compare to the

signal from the IF. Similarly to above, the signal at the IF

will see:

EIF (t) = A cos(k1Lmeas − ω1t + φ) (26)

+A cos(k2Lref2 − ω2t + φ)

and so our Poynting vector calculation yields:

PIF (t) =
A2

2

√

ǫ

µ

[

1 +
cos 2(k1Lmeas − ω1t + φ)

2

+ cos (k1Lmeas − k2Lref2 − (ω1 − ω2)t)

+ cos (k1Lmeas + k2Lref2 − (ω1 + ω2)t + 2φ)

+
cos 2(k2Lref2 − ω2t + φ)

2

]

(27)

and once again, the assumptions that only the baseband and

difference frequencies are detected result in

PIF,LP (t) ≈
A2

2

√

ǫ

µ
[1+ (28)

cos (k1Lmeas − k2Lref2 − (ω1 − ω2)t)]

Our first signal from Equation 25 is a sinusoidally varying

signal locked to the same source as the signal at our interfer-

ometer signal and so the AC portion provides a mixing signal

to demodulate the IF signal in Equation 28. This would result

in a baseband signal that varied as cos (k1Lmeas − k2Lref2),
and since k1 and k2 are known, the change in Lmeas can be

determined.

However, another way lends itself to high speed signals.

If the measurement mirror is moving, then that movement

will appear as a Doppler Shift in ω1 = 2πf1, so that ω1 =⇒
ω1 + ∆ω1 and Equation 28 becomes:

PIF,LP (t) ≈
A2

2

√

ǫ

µ
[1+ (29)

cos (k1Lmeas − k2Lref2 − (ω1 + ∆ω1 − ω2)t)] .

One way to measure movement then is to count zero

crossings of the cos ((k1 − k2)Lref1 − (ω1 − ω2)t)) versus

those of the cos (k1Lmeas − k2Lref2 − (ω1 + ∆ω1 − ω2)t)
signal. The two counters will run a the same rate if there is

no movement of the measure surface. If the measure surface

is moving towards the IF, the Doppler Shift will cause a

positive ∆ω1, causing the second counter to count faster. If

the measure surface is moving away from the IF, there will

be a negative ∆ω1, causing the second counter to count move

slowly than the reference.

One may ask why one would count zero crossings of

two AC signals rather than simply demodulate the two. The

answer is simply that it is often much easier to build accurate

high speed zero crossing counters, then high speed demod-

ulators. Furthermore, zero crossing detectors are sensitive to

timing variations, but not amplitude.

V. POSITION SIGNAL GENERATION

In previous sections, we have discussed how the inter-

ference pattern is generated and techniques used to make

this signal immune to various forms of imprecision. In this

section, we will show how the signal arriving at the detector

is turned into a position signal.

We start with the reminder that all position measurements

with an interferometer are relative. The fringes give a change

in position from some starting position. This is analogous to

trying to measure position from velocity measurements: one

must assume a starting position.

IF measurements rely on knowing the wavelength of light,

λ, and the wavelength being stable. This is why commercial

interferometers did not emerge until lasers were invented.

It is important to know that as pressure, temperature, hu-

midity,and gas composition change, so does λ. Thus, an IF

system is making measurements with a somewhat elastic

ruler.

While we are interested in a distance measurement, we are

really measuring an optical path length (OPL). To properly

translate this optical path back to distance, we must be able to

monitor and compensate for environmental changes. We will

see such compensation methods in the sections that follow,

but for right now we will start with the basic equation for
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interferometer distance measurement (IFM)

Position = FCmeas · WCN
λvac

OFF
(30)

where

• FCmeas = Fringe Counts or their equivalent produced

by more modern resolution extension methods,

• WCN = Wavelength Compensation Number, described

below,

• OFF = Optics Fold Factor = {2|4|8} depending on the

optics type, and

The Optics Fold Factor represents the number of times that

the beam has traversed the distance to or from the measure-

ment surface. A higher fold factor increases the effective

resolution because every distance change is multiplied up

by the fold factor. From this equation, one can see that the

uncompensated optical resolution, Roptics of the setup is

Roptics =
λvac

OFF
(31)

However, this base resolution is usually enhanced by further

subdividing the signal with an Electronics Resolution Exten-

sion (ERX) factor. So after adding in this term, Equation 30

becomes

Position = FCmeas · WCN
λvac

OFF · ERX
(32)

and the resolution of a Fringe Count (FC) becomes

RFC =
λvac

OFF · ERX
. (33)

Since the wavelength of light from a particular laser is

specified in a vacuum, λvac, we need the correction term,

WCN, for operation in air, where

WCN =
λair

λvac

. (34)

Initial systems provided two methods of entering in the

WCN value. One was a weather station with air tempera-

ture, pressure, and humidity sensors along with a hardwired

computing engine. The other was a set of four thumb-wheel

switches. Either one was used to obtain the last four digits of

the value 0.999xxxx, giving 0.1 ppm resolution to the value.

The system’s user manual contained pages of tables that

listed the last four digits of the WCN value for the expected

range of pressure, temperature, and humidity. Section VIII-G

discusses how one converts these environmental parameters

into changes in λair. However, for this section, it is enough

to realize that generating a distance measurement from our

interference pattern on our optical detectors is all about

counting the passing of cosine waves, which all have a period

related to the laser wavelength, λ.

The typical Helium Neon (HeNe) laser used in these

applications has a wavelength of λ = 632.8 nm. Using

double pass optics (OFF = 4) makes the base optical reso-

lution 632.8/4 = 158.2 nm. The initial systems counted zero

crossings as shown in Figure 13, which divided this base

optical resolution number in half (ERX = 2), resulting in a

resolution of 79.1 nm. Some systems used PLLs to frequency
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Reference
Detector

Measurement
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Up CounterZero Crossing
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-
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Fig. 13. Generating distance from AC frequency differences.

multiply both reference and measurement signals to further

subdivide the base optical resolution to obtain resolutions as

fine as 5.3 nm (λ/120) [13]. However, this technique required

precise PLL circuits with extremely wide dynamic ranges (3

to 90 MHz) and thus was impractical for increased resolution

extension. This might have been solved with high speed

digital PLLs, but for many years the processing speed in

DSP chips was not sufficient for this task. Furthermore, using

both edges of an oscillatory signal can cause errors if the

spacing between leading and trailing edges is not uniform,

so as higher accuracy was required, systems moved to using

leading edges only.

VCOPhase
Detector

Loop
Filter

1/32
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f - (2 f )1 1± fΔ

Reference
Detector

Measurement
Detector

Up/Down
Counter

Leading Edge
Detector

Leading Edge
Detector

Optical
Resolution

Counts

Phase
Counts

Start
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Phase
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Fig. 14. Upmultiplying the reference signal to increase delay computation
accuracy.

To interpolate between optical resolution counts in these

systems, a frequency multiplied reference signal (×32) was

used to measure the delay between the reference and mea-

surement signals (Figure 14) and the phase angle [14]. With

this method, the result used to compute the phase angle, φ
was given by

φdeg =
360 · Delay

32
(35)

With requirements for even finer resolution, higher update

rates, and the availability of high speed ASICs, this technique

evolved into using a very high frequency clock to rapidly (≥
10 MHz) measure both the period and current phase angle of

both the reference and measure signals and digitally process

the resulting four data values to calculate the instantaneous

phase angle and velocity, while still using a basic up/down

counter to accumulate optical resolution fringe count data.

This resolution extension method, shown in Figure 15, allows

rapid (20 MHz) update rates and 0.1545 nm resolution (ERX

= 1024) with plane mirror optics.

With the advent of modern Field Programmable Gate

Arrays (FPGAs) the above methods have given way to

demodulating the phase as one might have done with an
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analog PLL, but now entirely digital and at full speed. In

particular, one can use a digital Costas loop like scheme

shown in Figure 16 [15], [16], [17]. In this case, the incoming

phase signal is mixed with sine and cosine signals from a

local oscillator. The mixed signals are integrated over an

integer number of periods generating signals proportional to

the sine and cosine of the phase. These, in turn, can be fed

to an arctangent block which backs out the phase difference,

∆, between the LO phase, φ, and the phase input. This phase

difference is fed into the LO to adjust the phase and the rate

of change of the phase. The computed phase can then be

digitally differenced from the phase of the reference signal.

In fact, with a single reference, phases from many axes can

be differenced simultaneously by the FPGA system at high

speed. The fractional portion of the difference gives the sub-

wavelength accuracy of the measurement, so 10 fractional

bits would have an accuracy of λ/4/210 = 0.15449 nm.

VI. PRECISION INTERFEROMETRY THROUGH THE YEARS

Although Michelson invented the interferometer in 1887,

it took almost 80 years before displacement interferometers

became commercially available. Since then the development

has progressed, going from 15.8 nm resolution to 0.15 nm

resolution over a period of 40 years. Table I lists a couple

of the scientific developments along with the significant

commercial developments from HP/Agilent during this time-

frame. The table captures some of the key specifications of

interest to servo control system designers. Its no surprise that

the basic trend has been to higher laser power (for more

axes), higher resolutions, higher velocities, faster update

rates, shorter delays, and less timing uncertainty. All but the

higher power and velocity trends help improve closed loop

servo system performance.

VII. APPLICATIONS OF PRECISION INTERFEROMETRY

Over the years there have been a few large users of com-

mercial interferometer systems along with numerous small

users with specialized measurement needs. The following are

some of these uses:

• Servo track writers for hard disk drives were a major

business for many years. The servowriters were used to

write the dedicated and sectored servo information [18].

Eventually, the rise in areal density of the drives, cou-

pled with the lowering of costs, pushed the idea of self

servowriting to fruition largely ending this application

around the turn of the millennium [19].

• Wafer steppers are used to move Silicon wafers for

imaging with device patterns. As the control capability

has improved, these have been replaced by wafer scan-

ners, where the wafers are moved continuously during

the imaging process [20].

• Wafer inspection systems examine wafers after they

have been imaged to verify the work.

• LCD steppers are conceptually similar to wafer step-

pers, but have looser accuracy requirements and move

much larger surfaces.

• Calibrating other measurement devices, as to their an-

gle, straightness, squareness, etc.

• A variety of other metrology applications abound: cal-

ibration of machine tools, coordinate-measuring ma-

chines (CMMs), manufacturing and calibration of en-

coder scales and PZT devices, any distance measure-

ment over long distances where running cables or wires

would be prohibitive or dangerous, specialized custom

measurement machines.

A. Example: Multi-Axis Precision Measurement Configura-

tions

X-Y Stage

Mirrors
Y

X

Laser Source
Receiver

Non-Polarizing
Beam Splitter

(NPBS)

50%

50%

Dual Pass
Plane Mirror

InterferometersR
e

c
e

iv
e

r

Fig. 17. Two-axis plane mirror interferometer configuration
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Linear Optics Data Rate (kHz) Output Data
Intro Resolution (nm) Internal External Age (µs)
Year Model Normal Extended Update Output Fixed Variable Contribution

1887 A.A. Michelson’s Interferometer Basic Measurement Concept

1960 Bell Labs’ HeNe Laser

Practical light source for

longer measurements
1964 1st Commercial Displacement Interferometer (Airborne Instruments) Proof of commercial viability for product

1966 HP 5505A 158 15.8 0.01 na na na 2 frequency Interferometry

1975 HP 10760A 158 15.8 1800 5 SW ∼200

Multi-axis, higher resolution

and update rate

1977e
HP 10764B

/10762A 158 10.5 ≤22500 ≤22500 Higher Resolution and update/output rate

1986 HP 5507A 9.9 na 1800 1800—20A 1.7 0.3

Higher Resolution, Lower cost,

smaller form factor, higher reliability

1988 HP 5517B

Higher stage velocity (0.5 m/s with

Linear Optics)

1991 HP 5517C

Higher stage velocity (0.7 m/s with

Linear Optics)

1991 multi-axis interferometers introduced

Reduced axis to axis cosine error, smaller

footprint for pitch/yaw measurements

1994 HP 10889B 4.9 na 10000 10000 — 20 A 1.2 0.01

Reduced data age variation, higher

update rate

1994 HP 10897A 1.2 na 10000 10000 1.2 0.001

Higher resolution, reduced

data age uncertainty

1996 Agilent 5517D

Higher stage velocity (1.0 m/s with

Linear Optics)

2002 Agilent N1231A 0.62 na 20000 4000 0.52 0.025

Higher Resolution, Higher Data rate,

Multi-Axis Electronics
2004 Agilent N1231B 0.31 na 20000 20000 0.8 0.001 Flexible hardware interface

2004 Agilent 5517FL

Higher stage velocity (2.1 m/s with

Linear Optics)

2006 fully integrated multi-axis optics introduced

Reduced Optics Non-Linearity, Higher

optical efficiency

2006 Agilent N1211A

Higher stage velocity (4.1 m/s with Linear

Optics), Fiber delivery to vacuum

2007 Agilent N1225A 0.31 na 10000 10000 3.15

Integrated high sensitivity receivers,

non-linearity correction

2007 Agilent 5517GL

Higher power for high stage velocity

(2.2 m/s with Linear Optics)

TABLE I

INTERFEROMETRY THROUGH THE YEARS. NOTE THAT RESOLUTION IS TWO TIMES SMALLER WHEN USING PLANE MIRROR OPTICS. SW STANDS FOR

SOFTWARE ONLY UPDATES. “A” STANDS FOR ±10 V ANALOG OUTPUT FOR SERVO APPLICATIONS.
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Fig. 18. Yaw measurement of x-y stage with discrete interferometers

One of the great benefits of precision interferometry for

position measurement is that because the measurements are

done at a distance, multiple axes can be measured with

the same system, by splitting the laser beam and directing

it off of different surfaces and back to multiple receivers.

This can be seen in the two-axis configuration shown in

Figure 17, where a single beam is split and directed at

Stage
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Control
In

Stage
Position

Phase
Measurement

Wafer
Stage

Stage
Noise (w )S

Cable, friction,
rumble,

air buffeting,
power amp noise

Sensor
Noise (v)

Optical Path
Noise (w )I

Optical detector,
electronics noise,

ADC

Turbulence,
pressure variation,

humidity

Scan
Reference

Fig. 19. Using an interferometer in a stage position feedback loop. This
diagram shows a SISO application, but IFs are used to measure 6 or more
degrees of freedom.

polarizing beam splitter based interferometers. Each of these

beams is reflected off of a planar mirrors on the side of a

moving stage, resulting in position measurements for the x

and y axes. In Figure 18, this system is augmented further
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by splitting the beam three ways, allowing for differential

measurements in the y direction that can yield a measurement

of the stage yaw.

While these two diagrams are by no means exhaustive,

they do provide some insight into the design freedom given

by IF measurements on moving objects. Considerations have

to be made with respect to the:

• system setup to be employed, depending upon needed

accuracy and axes to be measured,

• degrees of freedom, basically how many axes will be

measured,

• speed and accuracy requirements, how fast those results

need to be provided. Calibration measurements typically

require far less system speed and allow for considerably

higher latency than measurements used to close the loop

in precision motion systems.

B. Wafer Stage Measurements

Wafer Stage

Fig. 20. Wafer stage system measured with interferometer.

The bulk of interferometers systems are used in the IC

photolithography industry [20], [21]. Here, very precise

machines move an X-Y stage under an optical column. What

is critical is the location of the stage relative to the optical

column, and the repeatability of this measurement. So these

systems use laser interferometers to measure the X and Y

positions of the stage and the column, as well as the pitch and

yaw of these items. Some even measure the vertical direction

of the stage. Figure 20 shows the basic setup without the

optical column which would obscure the stage.

VIII. THE MODERN INTERFEROMETER

The improvements to the basic Michelson interferometer

described in Section III give the tools to fix a variety of

issues, and modern interferometers are built with combi-

nations of these improvements. However, as accuracy and

speed requirements increase, these first order fixes become

susceptible to other errors. These issues will be delineated in

this section, along with designs that compensate for them. In

all cases, it is assumed that the interferometers use multiple

frequencies and polarizations of light, and that the beam

passes through a PBS some number of times to generate

interference fringes. We will see that there are a lot of issues

remaining in making our distance measurement immune

from inaccuracies and noise, as well as some clever designs

to overcome these hurdles.

IF measurements depend on knowing the phase difference

between two light beams and their wavelength. Anything that

affects the apparent phase or wavelength affects the accuracy

of the measurement. Thus, despite their utility, there are

substantial issues in the use of interferometers for precision

measurement systems. These issues must be understood to

appreciate the solutions that have been applied already as

well as new ones that are being proposed. A non-exhaustive

list of sources of errors and other issues [22]:

• Intrinsic: laser wavelength accuracy, measurement res-

olution, optics non-linearity, computational issues, de-

grees of freedom, angular range, velocity requirements

speed and accuracy requirements.

• Environmental: optical thermal drift, atmospheric com-

pensation, material thermal expansion, turbulence.

• Installation: Deadpath error, cosine error, Abbé error.

• Feedback loop usage: data age, interfacing with control

system.

The above issues will be described individually in the

following sections.

A. Laser wavelength Accuracy

Michelson [3] used a sodium flame for his monochromatic

light source, and although it contained a narrow range of

optical frequencies, its stability is not sufficient for modern

measurements. With the invention of lasers, and subsequent

frequency stabilization methods [23], [24], [25], one now

had a light source that was both single frequency and

highly collimated, perfectly suited for use in interferometry.

Thus for vacuum applications, one would have a very small

uncertainty for the wavelength value. A discussion of the

atmospheric effects on the wavelength of the measured beam

is in Section VIII-G.

B. Optics Non-Linearity
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Fig. 21. Worst-case error resulting from imperfect separation of two beam
components. Recreated from Chapter 12, Figure 48 of [26].

The discussion so far has been about the intended signals

reaching the detector, interfering, and creating a measure-

ment signal, and the phase of that signal being linearly

proportional to the motion of the mirror. And, for the

most part, this model worked well until the measurement

resolution became finer than 4 nm. At this level, the effects

of unintended signals reaching the detector started to be

seen. Real world interferometers contain additional optical

paths due to signal leakage of one polarization into the other

polarization’s optical path. When these unintended signals

reach the detector, they distort the signal from the ideal
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[27], [28], [29]. These signals and their effects are covered

in [30] (which will be presented later in this session), but in

brief, the unintended signals cause periodic non-linearities

in the transfer function between the motion of the mirror

and the output position value from the laser electronics.

The errors do not accumulate, but cycle about zero with a

period of one wavelength of optical path length change as

illustrated in Figure 21 [26]. To reduce these errors, modern

interferometers use higher quality PBSs and wave plates.

Electronic methods have also been devised to measure and

correct these errors [31].

C. Computational Issues

Modern interferometer systems convert the analog light

signals into digital signals and process the resulting data

stream with digital electronics. This introduces several is-

sues typically associated with real time computation. In

this section, we will discuss the issues that are internal to

the interferometer processing itself. A complimentary set

of issues involve interfacing the digital electronics of the

interferometer with the system that will be making use of

it, such as a control system. Those will be addressed in

Section IX-B. Here we will discuss

• quantization error,

• computational delay, and

• limited measurement range.

Quantization error is essentially the timing resolution that

the system uses to measure the phase change between the

measurement and reference signals. For most systems this is

sufficiently small to not be a real issue, but as IC line widths

continue to decrease, even 0.15 nm resolution of modern

electronics will not be fine enough for the position feedback

to the photo-lithography equipment’s servo systems. But

other applications without these tight resolution requirements

will have more resolution than they need.

The computational delay causes the most complications

for servo systems. As laser IF systems have improved to

compensate for optical issues and improve resolution, the

required computations have increased. Faster electronics help

offset this, but the overall computation times have gone

up in the latest systems. Fortunately, what matters most

is the variation in these computation times. Fixed delays

(generally referred to as Data Age) can often be compensated

by adjusting the position values by the velocity times the

delay. However, the variable portion of the data age can not

be corrected, and it shows up as measurement uncertainty.

Efforts are made to minimize this delay uncertainty.

With the high resolution represented by the LSB of a

digital position word, it takes a lot of bits to keep track

of a stage of moderate size (32 bits allows only +/- 331

mm at λ/4096 resolution). Early systems provided 28 bits of

position information, which was sufficient for most systems

then due to the lower resolution (0 to 21 m at λ/8 resolution).

Modern laser systems provide 32 to 36 bits of position infor-

mation, which still covers a wide range when all bits are used

(+/- 5.3 m at λ/4096 resolution). So designers must balance

resolution, word width, dynamic range, processing power,

and computation time to match their system’s performance

requirements (although with the relatively low cost 64-bit

computing platforms available today, this is less of an issue).

D. Degrees of Freedom

There are two aspects to this topic:

1) For a given axis, how many degress of freedom

does the mirror move?

2) For an overall system, how many degrees of

freedom does the system measure?

Ideally, the reflector for each interferometer axis only

moves in the direction being measured, or intentionally al-

lowed for in the case of plane mirrors. However this is rarely

the case, and cube corners move laterally to the beam, or

plane mirrors pitch and yaw. In both of these cases, the result

is lateral displacement of the return beam, which causes

reduced signal strength to the detector and/or added cosine

error. The WOW interferometer discussed below implements

a solution to address the first impact of this unwanted motion.

Adding multiple measurement axes to the system either with

additional interferometers or through the use of multi-axis

interferometers, addresses the second impact.

Reference
Reflector

Detector

λ/4

λ/4

Reflector
on Moving

Object

Laser
Source

Fig. 22. A WOW interferometer uses four passes to cancel the effects of
walkoff as well as angle due to stage rotation. The

Although the PMI improved the measurement mirror’s

angular range, there is still a need for additional angular

range at longer distances. The addition of a prism at the

output of the interferometer sends the beam back through

the optics where any walkoff that occurred in one direction

now occurs in the other direction. In a With Out Walk-Off

(WOW) interferometer [32], the result is a final output beam

that does not move when the measurement mirror pitches or

yaws and with twice the resolution as an added bonus. The

same concept can be applied to an interferometer using cube

corner reflectors to allow greater lateral movement of the

cube corner while maintaining the tolerance for large angular

variation of this reflector. With a WOW interferometer, the

angular range is limited by the size of the optics instead of

the beam diameter for any given measurement distance.

Figure 18 above shows an example of using two inter-

ferometers to measure the yaw of a stage along with the

X and Y location. The information obtained from the yaw
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Fig. 23. Agilent Z4399 A Three-Axis Interferometer: On the left is the
device. On the right is the device with representation of the laser beams.
(Recreated from Figures 242 and 243 of [33].)

data can be used to correct for the resulting cosine error

changes as well as for the precise location of the point

of interest on the stage. This implementation of a yaw

measurement has both a plus and some minuses. On the

plus side, the large separation between the two measurement

points means the angular measurement has a high resolution.

On the minus side, the use of two interferometers means

that there will be some difference in cosine error between

the two measurements, and also that a larger stage mirror

will be required. To address both of these minuses, as well

as the cost and installation complexity of using multiple

interferometers, multi-axis interferometers are now routinely

used to measure both pitch and yaw of a stage. And systems

with multiple multi-axis interferometers are used to fully

monitor all degrees of freedom.

E. Velocity Requirements

For a number of reasons, system velocity requirements

have gone up over the years. For DC interferometry, there

are no fundamental limits yet to the maximum velocity that

the system can track. However for AC interferometry, the

split frequency presents a hard speed limit for one direction

of travel. Since the basic equation for the Doppler frequency

shift is fm = f1±∆f1 (or fm = f1±2∆f1 for two pass IFs),

when ∆f1 ≥ f1, then the detected frequency goes through 0

Hz and becomes “negative”. But it is difficult (economically

impossible?) to monitor this transition and keep track of the

sign of fm, and thus actual distance, once it has gone to 0.

Section VI shows that the laser head split frequency has

increased over the years to accommodate the higher velocity

requirements.

Practical experience has shown that using an Acoustic

Optic Modulator allows greater control and range of split

frequencies than simply using the Zeeman Effect on its own.

However, as the split frequency and velocity go up, the

reference and measurement signal periods go down. And any

fixed timing jitter in the detector circuits becomes a larger

percentage of these periods, and thus can limit the resolution

and accuracy of the measurement.

F. Optical Thermal Drift

Single pass IFs have balanced paths, so interferometer

temperature changes affected both beams almost equally, and
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Fig. 24. Laser beam paths in a two frequency balanced path PMI

thus have minimal impact on the measurement. The initial

two pass interferometer shown in Figure 9 does not have

balanced paths, so any temperature change causes a greater

phase shift to one beam path than the other, and thus a

significant measurement error. The initial PMI design has

a temperature coefficient of ≈ 500 nm / ◦C due to the

measurement beam transversing about twice as much glass

as the reference beam. The revised two pass interferometer

of Figure 24 adds a quarter waveplate to the reference path

and changes the reference mirror from a cube corner to

a plane mirror. These changes make both paths identical

and reduce the interferometers temperature coefficient to less

than 40 nm / ◦C, a 12.5× reduction. This design change is

carried forward with new interferometer design with one goal

being to keep the two optical paths as equal as possible so

any environmental changes are common mode and thus self

canceling. However the realities of interferometer fabrication

mean that there will always be some path length differences

and thus some measurement change that correlates with

temperature .

G. Atmospheric Compensation

Section V introduced the WCN term as the wavelength

compensation factor, and Equation 34 defines it as the ratio of

λair to λvac. If one knows the index of refraction of air, then

one can calculate the compensation number as the reciprocal

of the index of refraction. In 1966, B. Edlén made numerous

measurements of the air pressure, temperature, humidity,

and gas composition, and created an equation, the Edlén

equation [34], that relates the index of refraction to these

measured parameters. In brief, the Edlén Equation [35], [36],

[37], [38] describes the variability of the index of refraction

of the optical path:

n − 1 = K(λ)
P

T
·
1 + εP (1 − αT )

1 + δ
T

≈ K(λ)
P

T
(36)

where n − 1 is the deviation of the refractive index away

from 1, K(λ) is a wavelength dependent scaling factor, and

ρ = P
T

is the density of air.

The constant K is the bulwark of the Edlén relation which

has a wavelength dependence for a standard atmosphere

(P ≈ 105 Pa, T ≈ 300◦K) including a correction for
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relative humidity. For λ = 633 nm, the value of K 10
5

300

is approximately 3 · 10−4 which means K ≈ 9 · 10−7

◦Kelvin/Pascal at standard temperature and pressure (STP)).

Thus a 1mK change in temperature or a 1/3 Pa change in

pressure results in a change in index n of 1 ppB. Note that

motion of a bluff body (such as one’s hand) moving at 1

m/sec can induce one half (1

2
) Pa change of presser.

Scaling these relations up to larger environmental changes,

one can derive some basic rules of thumb that can be used to

approximate the change in wavelength due to environmental

changes [22]:

• 1 ppm per 1 Deg C change in air temp

• 1 ppm per 2.5 mmHg change in air pressure

• 1 ppm per 80% change in air relative humidity

Relating these back to IF measurements, if continuous updat-

ing of a compensation factor is not done, and the environment

changes by 0.5 deg C, 0.5 mmHg, and 20% RH, then the

measurement will be off by 0.95 ppm, or 0.95 um per meter

of distance between the interferometer and stage mirror.

So one should use some form of compensation, and

the Edlén equation will provide the index of refraction

for the air, and thus a compensation number, based upon

quantities that can be measured. Even the early versions of

interferometer systems provided a means to either measure

these parameters (an indoor weather station) or enter a

compensation number that was obtained from a table based

on the user’s own measurement (or estimation) of them. Use

of this compensation method allows automatic (or manual)

calibration of the overall atmospheric conditions. However,

what this method cannot resolve is turbulence (discussed

more in Section X), which is a much more localized effect

of air pressure variation in the optical beam path.

H. Material Thermal Expansion Issues

Both the interferometer itself and a physical object being

measured will have thermal expansion issues. Ideally, the

interferometer and the object being measured can be in a

temperature controlled environment, however, much of the

time this is not possible. While it is possible to compensate

for much of the interferometer’s variation by balancing the

optical path (see Section VIII-F), the dimension change in

the object can be calibrated out by knowing the coefficient

of thermal expansion (CTE), α, of the object. Two such

applications of distance interferometers are calibration of

machine tools and coordinate-measuring machines (CMMs).

By standards, the length measurement values have been tied

to the standard temperature of 20 ◦C. When the object to

be measured/calibrated is not at 20 ◦C, the measured value

must be recalibrated back to what it would have been at

20 ◦C. For example, if one were measuring the length of

an object, L, then the true length at standard temperature,

Tnom(= 20◦C) could be obtained via

L = LT (1 − α(T − Tnom)) (37)

The material temperature compensation factor is usually

combined with the atmospheric compensation factor used to

scale the vacuum wavelength value used in the conversion

equation to the wavelength of the laser light in the current

air environment.

I. Deadpath Error
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Reflector

Laser
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Polarizer

D

Reference
Reflector

Detector

Measurement
Reflector

Laser
Source

Polarizer

D L

Fig. 25. Deadpath error in an IF measurement. The initial measurement
on top includes a distance, D, which is included in the “zero” position. The
lower measurement has a total distance of D +L, but since the D distance
is the “zero” the IF only counts L. Any atmospheric disturbance that affects
the optical path in D will contribute to error in the system.

A diagram of Deadpath error [26] is shown in Figure 25.

The Deadpath, D, is the part of the optical path that is

not part of the measurement, but instead part of the “zero”

position. The Deadpath distance should be a part of our IF

measurement, so any compensation changes get applied to it

as well. To include Deadpath in Equation 32, we both add

it in, and subtract it out to end up with

Position = (FCmeas + FCDeadpath) · WCN · RFC − D,
(38)

where

• FCmeas = Accumulated fringe counts from the starting

position of the measurement and

• FCDeadpath = Fringe counts that would have been

accumulated moving from the zero Deadpath (D = 0)

position to the actual starting position of the measure-

ment.

To calculate the FCDeadpath value, we use Equation 32,

substituting D for Position and defining WCN0 as the

compensation value at the system reset time. Thus,

FCDeadpath =
D

WCN0 · RFC

. (39)

Substituting (39) into (38), separating terms, and simplifying

yields

Position = FCmeas ·WCNRFC +D

(

WCN

WCN0

− 1

)

. (40)
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From this we can see that the first term of (40) is identical to

(32) and the second term is the correction factor for having

Deadpath in the system.

To help one determine if Deadpath correction is needed in

any given situation, one needs a quick way to estimate the

magnitude of this correction term. Section VIII-G presented

rules of thumb for obtaining an estimate for a ∆WCN value.

Rearranging the Deadpath correction term from Equation 40,

using the definition of ∆WCN:

∆WCN = WCN − WCN0, (41)

and the knowledge that WCN0 will always be within about

300 ppm of 1, the magnitude of the Deadpath error can be

estimated as [26]

ErrorDeadpath = D × ∆WCN (42)

This equation tells us that we want to minimize Deadpath and

changes to the compensation number in order to minimize

this error source.

J. Cosine Error

θLaser Measurement Axis

Distance Traveled on Axis of Travel (L)

Distance Measured by IF (L )S

Axis of Travel

Fig. 26. Diagram of cosine error as diagrammed in [26].

All distance measurements are prone to cosine error, dia-

grammed in Figure 26, which occurs when the measurement

axis is not perfectly parallel with the line connecting the two

points that are being measured. The actual length traveled,

L, is smaller than the apparent distance traveled, LS by

L = LS cos θ (43)

which means that

Ecos = L − LS = LS (cos θ − 1) . (44)

The cosine error is usually characterized by its magnitude,

|Ecos| = LS (1 − cos θ) . (45)

Proper installation and optical alignment techniques and

tools are needed to minimize this error source. Active pitch

and yaw measurements (which can be made using multiple

beams) can also be used to characterize θ and remove the

cosine error in software.

The relevant optics manuals provide detailed alignment

techniques to minimize cosine error, generally getting it

to less than 0.05 ppm (mis-alignment angle less than 0.35

mRad).

θ
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Measurement
Axis Distance Measured by IF

Distance Traveled on Desired Axis

Desired
Measurement

Axis

L

ε

Fig. 27. Diagram of Abbé error as diagrammed in [39].

K. Abbé Error

All distance measurements are also prone to Abbé er-

ror [26], [39], shown in Figure 27. Abbé error is caused by

a lateral offset, L, between the desired axis of measurement

and the actual axis of measurement, as well as a rotation, θ,

of the measurement mirror away from being perpendicular

from the axis of measurement. The resultant Abbé error, ε
is defined as:

ε = L tan θ. (46)

A general rule of thumb is that Abbé error is approx-

imately 0.1 µm per 20 mm of offset for each arc-second

of angular motion [26]. While any type of displacement

transducer is susceptible to Abbé error, laser interferometers

can minimize this by placing the measurement axis closer

to the desired measurement axis or by actively measuring

the angle, θ, and compensating for the error in software.

Pitch and yaw measurements, which can be accomplished

with multiple IF beams, also enable measurement of θ and

compensation for this.

IX. USING INTERFEROMETER MEASUREMENTS IN

FEEDBACK LOOPS

While precision IF measurements can be used for static

measurements, the ability to tie these systems into feedback

loops has dramatically raised their utility. Non-contact, multi-

dimensional, measurements provide a lot of advantages, and

with resolution in the sub-nm range, and sample rates up

to 20 MHz, there are few control problems that can outrun

the data at sample rate provided. (For example, the Agilent

N1231B PCI Three-Axis Board with External Sampling

updates position and velocity values for three axes of mea-

surement at 20 MHz, with 0.15 nm resolution, on 32 or 36

bit data words [40].) Control using precision interferometers

allow enough measurement precision to push new control

methodologies as will be described in [41].

However, as with all control systems, certain issues re-

main. In particular, data age (or the latency in the interferom-

eter from the time that position is sensed until it is available

to the control computer, is described in Section IX-A. Issues

of digital interconnect between interferometers and digital

control systems are discussed briefly in Section IX-B.
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A. Data Age Issues (time delay of measurement)

As system performance requirements have improved, the

time required to process the data and generate a position

value, as well as the variation in this time, have become

more of an issue. When systems are moving slowly or have

low servo update rates, then any uncertainty introduced by

several microseconds of delay or hundreds of ns variation

in this delay are insignificant. But as systems move faster,

then 50 ns of timing uncertainty will introduce 50 nm of

measurement uncertainty when moving at 1 m/s.

Even with a 20 MHz sample rate, the 50 ns sample

period gives opportunity for up to a full sample period of

delay in handing off the digital outputs to another processor.

To minimize this, the Agilent N1231B “external hardware

sample inputs are synchronized to a 160 MHz clock. The

circuits then interpolate between two successive internal

values so the position read over the PCI bus corresponds

to the sample time plus the sample delay time ±4 ns.” [26]

B. Interfacing With Control System

Another issue facing use of interferometers is that due to

the high resolution, the position value contains many bits.

In general, commercial servo control systems are setup to

handle A quad B and Sin/Cos inputs, but only a few directly

accept large digital words. So some provision must be created

to transfer the digital word to the control system. Since

there is usually some processor within the control system,

it can extend the range of the measurement by adding bits

to the left of the transferred position word provided the

word size exceeds some minimum number of bits. This

word size can be determined from the servo update rate, the

system’s maximum velocity, and the resolution of the laser

measurement system using the following relationship (based

on making sure the stage doesn’t move more than 1/2 of the

dynamic range of the word size in 1 servo period’s time so

the controller will be able to determine in which direction

the motion occurred).

Resolution × 2N−1 >
vmax

fS,servo

(47)

where N is the number of bits required in the position word,

vmax is the maximum velocity of the object being measured,

and fS,servo is the sample rate of the servo system.

Moreover, beyond the word length requirements, there

is the pervasive issue of interfacing two digital systems

at high speed. Real time data must be handed off from

the interferometer processing boards to the control system

with minimal latency and in a synchronous manner. This

often requires a lot of custom programming between the

interferometer vendor and the customer buying the systems.

X. TURBULENCE

As discussed all through this article, accurate measure-

ments require an accurate knowledge of the laser wave-

length, λ, across the entire length of the measurement path.

Basic atmospheric compensation can be accomplished with

a weather station that measured pressure, temperature, and

(a) (b) (c)

Fig. 28. Turbulence ”bubble” crossing interferometer beam.
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Fig. 29. Conceptual block diagram of wafer stage interferometer (IF)
measurement disturbed by turbulence.

humidity as described in Section VIII-G. However, this can

only make adjustments for static or overall fluctuations.

Turbulence in the measurement beam is more insidious in

that it can cause a dynamic change in air pressure across

the measurement beam, thereby distorting the wavelength

(Figure 28). Two frequency interferometry provides some

immunity [12], but as required precision has increased,

the minute effects of turbulence have remained. Certainly,

turbulence can be minimized in temperature and humidity

controlled environments, but movement of objects through

any medium, be it liquid or air, causes pressure waves. In

high precision, high speed control systems, such as wafer

scanners (Figure 29, the turbulence effects can distort the

measurement on the order of tens of nanometers, which is

too much for the line spacing of current generation computer

chips.

A. Alternate Methods: Grid Plates

Fig. 30. Example of grating/scale method

Since turbulence happens along the beam path, the longer

the beam path, the more susceptible the measurement is to

turbulence. One way to minimize this problem is to use a

different type of interferometer in combination with grating

plates placed in proximity to the wafer scanner and in parallel

with the main plane of motion as shown in Figure 30 [42],
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[43]. The resolution of these systems is limited by the

size of the features on the grating, rather than the optical

wavelength, but the optical paths are quite short, minimizing

but not eliminating, the effects of turbulence. The downside

of this method is that it requires that either gratings be on the

moving stage or lasers be on the moving stage. If lasers are

placed on the stage, the cabling requirements to the stage go

up dramatically, as does the drag and offset forces caused

by the cables. If the gratings are on the stage, then these

take up much of the area of the stage, which is supposed

to mostly hold the wafer. Furthermore, large glass gratings

with nanometer precision require incredible manufacturing

precision, and at nanometer scales, glass distorts and flows,

so such a system must be repeatedly recalibrated.

B. Closed-Loop Interferometer (solution to some problems

with current interferometer systems)
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Fig. 31. Experimental results from QP algorithm [7] with a stationary
stage and interferometer beam disturbed by air cannon shots.

A new interferometry method known as quintessential

phase, QP, comes from the realization that turbulence bubbles

such the one in Figure 28 are not noise and do not materialize

instantly “out of thin air.” They are in fact dynamic processes

that can be detected (using a multi-segment detector), and if

they can be detected, they can be tracked, using an Extended

Kalman Filter (EKF) [44]. This work is described in detail

in [7], but Figure 31 shows the method being used on a

static stage test with turbulence pulses from an air cannon

across the measurement beam. In short, interferometry using

a single detector (red line) cannot detect the change in the

wavefront as being anything different from a position change.

The multi-segment detector makes the turbulence induced

change in the wavefront observable, allowing the EKF to

model it as turbulence (black line), and then remove this

effect from the position estimate (green line).

XI. CONCLUSIONS

This tutorial has hopefully given the reader an introduc-

tion to laser interferometers as a measurement device with

strong applications to feedback loops. The ability to make

non-contact, highly precise, multi-dimensional, high speed

measurements of moving physical objects should be quite

attractive to most control engineers. The bulk of the docu-

ment has been spent on giving the reader an understanding

of how these position transducers work, what can limit their

accuracy, and the incredible design innovations that have

gone into improving the accuracy, robustness, and speed of

these devices.
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