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A Tutorial on Laser Interferometry for Precision Measurements

Russell Loughridge™

Abstract— Laser interferometers have found wide usage in
a variety of precision measurement applications. The ability
to gain precise position information with minimal change to
the dynamics of the device being measured has a large set of
advantages. This allows interferometer systems to be used in
feedback loops for precision systems. This paper presents a
tutorial on laser interferometers, their use in precision motion
feedback systems, the issues faced by such systems, and some
of the solutions that have been applied to these issues.

I. INTRODUCTION

Michelson type laser interferometers measure distance by
measuring the phase difference between two portions of the
same beam, one sent to a reflector at a fixed distance, and
one sent to a measurement surface at an unknown distance.
When the two signals are recombined in the interferometer,
the resulting phase is related to the distance of the reflected
surface from the interferometer. As the distance changes,
so does the phase of the combined signal. The utility of
these methods are that the measurement can be made over
long distances while maintaining accuracy. However, as the
needed accuracy of the target applications has increased,
interferometers have been adjusted to desensitize them to
an increasing number of effects.

Most engineers hear about optical interference in col-
lege physics and promptly forget about them. However,
for the group of engineers and scientists that keep using
them, optical interference provides highly precise and yet
remote position measurements. The ability to resolve small
features, down the the fraction of the wavelength of light
(390 to 700 nm [1]), as well as the non-contact nature of
the measurements are inherent advantages. Because of this
interferometric measurements are used in fields that go from
astronomy to oceanography, from chemistry and physics to
laser tape measures and laser mice for computers [2].

For this tutorial, we will restrict our discussion to laser
interferometers (rather than so called white light interfer-
ometers). Furthermore, the interferometers (IFs) we discuss
will largely focus on those taking the form of the Michelson
interferometer [3], [4], [5], but using a laser light source.
While the original Michelson interferometer is not a prac-
tical design for reasons that we will discuss, it provides a
clean conceptual model with a very understandable idealized
behavior. Our approach will be to describe the idealized
behavior of the Michelson in detail, and then show how
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practical issues arise which cause design changes. Still, the
net effect of these design changes is to cancel out the non-
ideal behavior, so as to restore the instrument’s behavior back
to the original model.

From a simplistic control design view, an interferometer is
simply a complicated, expensive sensor, that provides highly
accurate, non-contact measurements of a certain number of
axes at a high rate for a certain cost. However, we believe
that understanding how precision interferometers operate will
give control designers much better insight into how to use
these devices and how to configure them for maximum
utility.

The rest of this paper will proceed as follows: Sec-
tion II will introduce the Michelson Interferometer and
derive the idealized behavior from the electromagnetic wave
equations [6]. Factors that make the original Michelson
interferometer impractical and fixes to them are discussed
in Section III. In Section IV, we introduce two frequency,
or heterodyne interferometry. Finally, in Section V, we show
how the interferometer fringes on the optical detectors are
turned into position measurements.

With the basic concepts explained, we describe the history
of and uses of precision interferometers in Sections VI
and VII. We then return to issues with modern interferom-
eters in Section VIII. and cover their use in closed loop
servo systems in Section IX. We close with a discussion
of turbulence in Section X, one of the more difficult and
pervasive problems with interferometry. This will tie in well
with the last paper in the tutorial session which will discuss
a closed-loop method of combating turbulence using a multi-
segment detector and an Extended Kalman Filter [7].

II. THE MICHELSON INTERFEROMETER
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Fig. 1. Basic Michelson Interferometer

The basic Michelson interferometer (Figure 1) uses a half
silvered mirror to split a monochromatic light source into two
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Fig. 2. Effects of interference on detector. On the far left is the typical
diagram one sees in books. However, the banding is typically caused by
the beam being cropped and not the effect of the interferometry. A better
picture comes from the three diagrams on the right, in which the intensity
of the central Gaussian lobe is modulated by the interference pattern.
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Fig. 3. Some details on the beams of a Michelson interferometer

beams. Each beam reflects off of a mirror, to be recombined
at the half-silvered mirror. The recombined beam contains an
interference pattern that changes when either of the mirrors
move. Keeping one mirror fixed allows one to attribute all
of the interference pattern changes to motion of the other
mirror.

Many texts show the an interference pattern such as the
one in the far left of Figure 2. However, in the absence of
the beam being cropped, the detector will see a collimated
beam on its center axis. Typically, this is modeled as a
Gaussian beam and as the measure mirror moves the intensity
of this pulse will vary, as shown in the right three figures of
Figure 2. The detector then acts to integrate the intensity
of the beam over its spatial extent, and — assuming the
integration is faster than the change in the interference
pattern — this integrated intensity can be used to measure
distance, modulo the wavelength of the laser used.

The Michelson interferometer is one of the most basic
models of interferometry available. It is not a practical
interferometer, in that there are significant issues with the
actual implementation. However, it provides an easy to
understand conceptual model for understanding precision
measurement interferometers. What we will find is that for
every imperfection of the Michelson interferometer, there
is a practical fix that expands the range of usefulness of
the interferometer. In the course of this tutorial we will
go through a “problem-fix” approach. Each of these fixes
essentially returns the interferometer back to a more ideal
Michelson behavior.

We start our analysis of the Michelson IF equations by

looking at Figure 3. For our purposes, the source beam can
be considered to originate at position 1, right before contact
with the half silvered mirror. At the mirror, half of the beam
is reflected to the reference mirror (path r2-r3-r4) where it
is reflected back towards the half silvered mirror. At this
interface, half of the beam is passed through to position
5, while half reflects back to the source. Meanwhile, the
transmitted portion of the beam goes to the measurement
mirror (path m2-m3-m4) and reflects back. At the half
silvered mirror, half of the measure beam is reflected to
position 5, while half passes back to the source. We are
concerned with the two beams that meet at position 5 and
are imaged on the detector.

A few things are important to understand interference as it
is used in our measurements. First, since both the reference
beam and the measure beam originate from the same laser,
they are coherent with each other. Second, every time a beam
goes through a reflection, it undergoes a 180° phase shift. A
look at the diagram of Figure 3 indicates that each beam at
position 5 has gone through 360° in phase shifts and thus
they are still in phase with each other. Third, by the time both
beams reach position 5, their amplitude has been reduced to
% of their original amplitude. If the reflection/transmission is
exactly 50/50 and if the mirrors are perfectly aligned, then
both beams add through linear superposition and have the
same amplitude. Thus, we can attribute the variation at the
detector to interference.

The equations for the interference pattern are derived in
classic optical texts [5], [8] from application of the vector
electromagnetic wave equations [6], [9]. Consider the electric
field of the source beam at position 1:

E, source(z,t) = Acos(kz — wt + ¢) (1

where z is the direction of travel, k = 27” is the wave number,
A is the wavelength of the light, and A is the amplitude of the
beam. From position 1, the reference beam travels a distance
L,cs = 2d; to get back to position 5, while the measure
beam travels a distance L,,¢qs = 2ds to get back to position
5. If we consider position 1 to be z = 0, then the two beams
are thus,

A
Eref(t) = 1 cos(kLyes — wt + ¢) 2)
for the reference beam and
A
Emeas (t) = Z COS(kLmeas —wt + ¢) (3)

for the measure beam. Through linear superposition, the
beams add, so that the electric field of the combined beams
at position 5 is

Ei(t) = 4 cos(kLycs — wt+ ¢)

+ cos(kLmeas —wt + @)]. @)

A word about notation is useful here. Normally, when one
is working with wave equations [6], [9], the equations are set
up as vector quantities along some frame of reference. This
works very well in analysis of plane equations, point sources,
etc. but in our interferometer, the direction of the beams are
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switched so often that keeping track of all the vector frames
becomes confusing. For this tutorial, we will assume that
the source electric field is in the X-Y plane, and the source
magnetic field is rotated 90° in that plane. This means that
the Poynting vector which describes the energy density is
in the Z direction. Every time we go through a reflection,
polarizer, or beam splitter, the reference frame is changed,
but our signals will end up so that the Poynting vector is
normal to the detector plane. For the sake of simplicity, we
will leave off the unit vector designations on the equations.

The detector is sensitive to signal intensity, not amplitude,
and we can calculate this from the Poynting vector. If we
assume that the electric field is in the = direction and the
magnetic field is in the y direction, then

Hiot(t) = %\/% [cos(kLyes — wt + ¢)
+ cos(kLpmeas — wt + &)] .

We now have two choices to simplify this: proceed with
trigonometric identities or switch gears to saying that Equa-
tions 4 and 5 are the real parts of a complex exponential
notation. For pedagogical purposes, we will plug through the
trigonometric equations here. With the polarizations we have
assumed, the Poynting vector, P(t), will be in the direction
normal to the detector with

Prot(t) = Etot(t) X ﬁtat(t)

(&)

AQ
- 5 [cos & + cos 3] (6)
A? e

= T\ [cos® a4 cos® B+ 2cosacos ] (7)
I

where o = KL,y —wt+ ¢ and § = kLpeqs — wt + ¢. With
this and some trigonometric identities, we end up with

1 _
cos’ a = cos 2(kL;ef wi+9) ; (3)

1+ cos2(kLpeas — wt + @)

2 )
COS (k(Lmeas + Lref) — 2wt + 2¢)
% 08 (k(Lmeas — Lrey)) -

cos? 3 = and ©))

2cosacosff =

(10)
Putting these all together,

A% e
Prot(t) —[14cos2(kLyes —wt + @)

32\ p

+1 + cos 2(kLpeas — wt + @)

42 cos (k(Lmeas + Lrey) — 2wt + 2¢)

+ 2c0s (k(Lmeas — Lrey))] (1D

If we average over an integer number of periods, T" =
% = 2% then the time varying portion integrates out, leaving
only the DC portion:

Ptot,avg = 114762\/5 [1 -+ cos (k(Lmeas - Lref))] (12)

As a practical matter, the laser frequency is so much faster
than the integration time of our detector that we are always
getting the “DC portion”. Thus, the relationship that is most

commonly used for this type of interferometer is that for the
intensity:

I ~ K[14cos(k(Lmeas — Lref))] W/m?  (13)

This is often rewritten in terms of the wavelength, A, as
I ~ K|[14cos (2 (Lmeas — Lres))] W/m? (14

This provides the power density at the detector in
Watts/m?. The detector integrates the energy density (in-
tensity) over the detector surface. Thus, it is not the pattern
on the surface that matters so much as the amount of intensity
on that surface. Equation 13 gives the density at a given
point. In fact for a highly collimated beam, the distribution
is likely Gaussian and effect of a change in L5 1S to cause
the height of this Gaussian distribution to rise and fall. If all
other variables are held constant, one can measure a change
in distance by counting the passing of these light and dark
times. From Equation 13 we see that we are still missing
an ability to discern direction of motion. This is fixed in a
single frequency IF by splitting the the beam and adding a
phase delay to one portion, thus allowing for in-phase and
quadrature demodulation (IQ).

III. ISSUES AFFECTING MICHELSON INTERFEROMETERS

Michelson interferometers are easy to understand but face
some very practical issues. The first is that the half silvered
mirror works through amplitude splitting and this causes
beam power to be lost. Looking at Figures 1 and 3, we
see that both the beam from the reference reflector and the
beam from the moving reflector will be split again, resulting
in only half of the amplitude of each showing up on the
detector. The rest the light will be sent back into the laser,
causing interference with the laser.

Furthermore, the Michelson interferometer is very sensi-
tive to mis-alignment and producing an exact 50-50 ampli-
tude split is difficult.

A
s polarization

14
¥ >
p polarization

Polarizing Beam Splitter

Fig. 4. A polarizing beam splitter (PBS) allows light in one polarization
(P) to pass through unhindered while it reflects light in the orthogonal (S)
polarization.

To get around this, most Michelson style interferometers
work with multiple light polarizations and a polarizing beam
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splitter (PBS), diagrammed in Figure 4. A polarizing beam
splitter allows light in one polarization (P) to pass through
unhindered while it reflects light in the orthogonal (S)
polarization. Aligned with a 45° angle to the incoming beam,
it results in the beam being split into two directions, each of
a single linear polarization. The great advantage of using
multiple polarizations and a PBS is that unlike the half
silvered mirror, there is little loss in optical power.

With the proper control of the polarization states of the
source light, one could split it into two components and com-
bine them with minimal loss at the equivalent of position 5
in Figure 3, except that in place of the half silvered mirror is
the PBS. The key then is controlling the polarization of each
of the split beams so that they are in matching polarizations
when they arrive. This is done with a combination of mirrors,
cube corners (to be described below), and wave plates.

Circular

Fig. 5. Wave plates are used to change the polarization state of light.
(Recreated from [10].)
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Fig. 6. Interferometer with Polarizing Beam Splitter (PBS) and quarter
wave plates.

Wave plates are optical components that slow one of the
polarization states of the incident light, relative to the other.
They are typically made of birefringent crystal, where the
birefringence is characterized by the difference in the indices
of refraction of the two axes of the crystal, An. If light enters
with equal polarization in two axes, one of those axes will

have a phase delay given by [11]:

~ 2mAnL
==

where )\ is the wavelength of the light in vacuum. By choos-
ing the length, L, of the crystal, a chosen phase delay may be
imparted. Typical values for L result in a quarter wave plate,
which results in a 90° phase lag in one of the polarization
states (relative to what it was when it entered the wave plate)
and a half wave plate, which retards one polarization state
by 180°. As such, the quarter wave plate, often designated in
a diagram by %, can be used to transform linearly polarized
light to circularly polarized light and vice-versa. In fact, a
typical optical path sequence that is seen in interferometers is
that light with S polarization passes through a quarter wave
plate (giving it circular polarization), is reflected (reversing
the direction of the circular polarization), and passes back
through the quarter wave plate (giving it P polarization).
These polarization changes allows portions of the beam to
either pass directly through a PBS or be diverted by it.

One more needed component is a polarizer, which selects
out a particular polarization of light. One can think of any
polarization vector as being the resultant of two other vectors.
For example, vertical, .S, polarization can be viewed as the
resultant of equal polarization vectors at £45°. Likewise,
horizontal, P, polarization can be viewed as the resultant of
equal polarization vectors at 45° and at 135°. Sending these
two beams through a polarizer that selected out polarizations
at 45° would result in the 45° components of the .S and P
light being selected out. Polarizers will often be seen right
before the detectors in an interferometer configuration to
select out the components that can be interfered with each
other.

Figure 6 shows an interferometer configuration using a
polarized light source, a polarizing beam splitter, quarter
wave plates, and plane mirror reflectors. Say we have a
source beam with equal components of polarization in S
and P. Upon striking the interface of a PBS, the S polarized
component will be diverted to reference mirror, while the
P polarized component will pass on to the measure mirror.
To pass the return beams to a location distinct from the
laser source, the beams exiting the PBS are passed through a
quarter wave plate resulting in a change of polarization from
linear to circular. Reflection off of the plane mirror results in
a reversal of the direction of circular polarization and both
beams pass through the quarter wave plate again. The net
result is that the reference beam returns to the PBS with
a P polarization while the measurement beam returns to the
PBS with an S polarization. The properties of the PBS cause
both of these beams to combine and exit the PBS in a new
direction. Both measure and return beams are then passed
through a polarizer, which selects out the common linear
polarization between the two. This is what the detector sees.

This is all an improvement, but we have not solved the
angle sensitivity problem. One solution that can be used
when the measure mirror is only moving along a single axis
is to use a corner cube or retroreflector. A two dimensional

r (15)
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Fig. 7. Planar corner cube (retroreflectors). Actual retroreflectors are built
in 3 dimensions, but the concept can be diagrammed well in two.

diagram is shown in Figure 7.

The corner cube/retro-reflector has the unique property
that it returns light back along an axis parallel to the
axis of the incident beam, independent of the angle of the
retroreflector. This can be seen in the simple geometry of
Figure 7. Ideally, the mirrors on our two dimensional cube
corner would be at +45° from the incoming beam direction.
A variation in the alignment of the cube corner would not
result in a different direction for the reflected beam, but
would result in a beam that was translated a small amount
with respect to its original axis. As long as this translation
is small relative to the size of the detector, it is not an
issue. However, unlike a plane mirror reflector, when the
cube corner translates side to side (or up or down), the
return beam translates twice as far in the same direction.
This characteristic reduces the allowable lateral motion of
the reflector to about 1/4 of the beam’s diameter (about +1.5
mm for a 6 mm beam diameter) so there is always about 50%
overlap with the reference beam (the actual required overlap
depends on the receiver’s sensitivity). For typical precision
systems, this straightness of travel requirement is usually not
an issue.

AN

Reference
Reflector / \
d1
Laser N \
Source i
Polarizing Reflector
Beam on Moving
< T Splitter . Object
M ¥
Polarizer d2
Fig. 8. Interferometer with Polarizing Beam Splitter (PBS) and corner
cubes.

The corner cube also allows the reflected beam to be
rerouted to a different portion of the PBS. This offset in the
beams (known as Offset Beam Interferometry) can be used to
avoid sending return laser beams back into the laser source.
The example in Figure 8 uses two corner cubes to route the

beam to a different location so that the detector and the laser
source do not have to be coincident. The reference beam with
S polarization is reflected to the reference reflector and back
to the PBS with the same S polarization. The measure beam
with P polarization passes through the PBS and returns with
the same polarization and passes through the PBS. In order
to combine the two return beams, we need to select out the
common polarizations of the two beams with a polarizer.

/ \ Quarter-wave
Plate
Laser EN t |_| )
Source ¥ o T I T
—H:Zﬁﬁ
Polarizer

Plane
Reflector

Fig. 9. Laser beam paths in a two-pass plane mirror interferometer (PMI)

As noted, corner cubes are restricted to one direction
of movement. To allow the measurement surface to move
in multiple directions, a Plane Mirror Interferometer (PMI)
must be used. In order to provide angular insensitivity, the
measure beam is offset using a corner cube and passed back
to the measure mirror again. Thus, to first order, variations
due to angles of the measure beam are undone by the second
pass.

Detector

/hlze

<«——  Beam Diameter

L J
Meas Wave Front

L J
Ref Wave Front

Fig. 10. Angle limit for single pass plane mirror reflector

Introduction of the Plane Mirror Interferometer signifi-
cantly increased the allowable angular range for the moving
mirror. With single pass interferometers, the allowable angu-
lar range is limited by Equation 16. The PMI (Figure 9)
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Fig. 11.  Angle limit for two pass plane mirror reflector

eliminates this restriction by automatically correcting any
wavefront tilt caused by angular movement of the mirror.
Any tilt from the first reflection off the mirror is untilted
by the second reflection because the cube corner on the
interferometer swaps the beam side to side and top to bottom.

. 3\

_— 16
4 x BeamDiam (16)

1
Angular Range ~ 5 tan™
This is derived from the fact that the wavefront tilt must be
less than A\ over the beam diameter so a wavefront of the
measurement beam does not cross more than 1 wavefront of
reference beam. Using ~ %)\ is a reasonable limit to set.
Thus:

hsin(20) < %/\ (17)
hcos(20) = BeamDiam (18)
BeamDiam

ho= cos(260) (19)
tan(2) < 52 (20)

4 BeamDiam

There still is a restriction on the mirror’s angular range, but
it is much less restrictive than a single pass configuration. For
example, with a 6 mm beam, a single pass IF has an angular
range of approximately 40 pRadians. With the same beam
a PMI would have an angular range of about 7.5 mRadians
when the distance to the measure mirror, Lycqs/2 = 100
mm, and about 1.5 mRadians when L;,cqs/2 = 500 mm.

_1 BeamDiam

1D 21

Angular Range ~ % sin

This is derived from knowing that beams should overlap
50% to get good signal (note high sensitivity receivers allow
operation with less than this, but general rule of thumb is to
have at least this much). Drawing out a ray trace diagram,
one can see that the final meas path output beam is offset
from its original position by 2 x D x sin(26), where D is the
distance between the mirror and the interferometer and theta
is the difference between the mirror’s angle relative to the in-
coming beam and 90 degrees. (yes there are some additional
offsets caused by the beam path within the interferometer,
so this equation changes for small values of D, but for most

situations, D is large and the other term can be ignored). So
the requirement is:

BeamDiam
2

There are two additional consequences of having the
second pass in a PMI. One, the resolution of the measure-
ment is double that of a single pass interferometer, as any
motion of the mirror now causes two times the phase shift
in the measurement beam. Two, the maximum allowable
velocity is cut in half for two frequency interferometers,
which is discussed in Section IV and velocity requirements
in Section VIII-E below.

2 x D x sin(20) < (22)

IV. TWO FREQUENCY INTERFEROMETRY
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Fig. 12. Two frequency (heterodyne) Michelson interferometer configura-
tion.

All the modifications to the Michelson interferometer
discussed thus far essentially are designed to desensitize the
interferometer to non-ideal behavior and restore the accuracy
of Equation 14. However, even when things are properly
aligned, the interferometers described so far operate in the
baseband. They use a single frequency of light, also known
as homodyne interferometry, and the “difference” between
measure and reference only shows up as a baseband phase
and Equation 14 is a variation away from DC. DC detection
is slow and suffers from < and other noise in the detectors,
mainly signal intensity variations (due to air turbulence or
accumulated contaminants on mirror and optic surfaces)
being indistinguishable from position changes.

Borrowing from the world of radio communications, it
is more advantageous if the interference shows up at some
intermediate frequency. To achieve this, modern IF mea-
surement systems typically operate with multiple wave-
lengths [12], where the interference pattern is not a baseband
signal, but in fact an AC signal, as diagrammed in Figure 12.
Thus, distance becomes a measurement of the difference
between two signals, one of which (known as the mea-
surement signal) is modulated by the moving object, while
the other (known as the reference signal) is generally fixed.
The reference signal is usually composed of the difference
between the two frequencies before one of them has been
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modulated, but can also be another modulated signal to create
a differential measurement between two moving mirrors.

In the interferometer described in [12], a single laser is
made to produce two frequencies of light in opposite circular
polarizations. In the case of a HeNe laser, this is done by
applying a magnetic field to the laser cavity which splits
the emission of Ne into two lines (known as the Zeeman
Effect [5]). We will consider f; to be the measurement
frequency and f5 to be the reference frequency. As the two
frequency beam comes out, it is split into a portion that
goes to the IF and one that returns back to the measurement
system. The return portion is split into a portion to control
the laser power and one that images on an optical sensor.
This sensor, the Reference Sensor then sees

Eres1(t) = Acos(kiLres1 —wit+ @)
+Acos(kaLyep1 — wat + @)

(23)

Again, we calculate the intensity by using the Poynting
vector to get the variation of intensity at the first detector:
Putting these all together,

ref ( ref x Iy?efl()
A% e 0082 (k1Lyey1 — wit + @)
2\ [ 2
+cos ((k1 — k2)Lyep1 — (w1 — wa)t)
+ cos ((k1 + kZ)Lrefl — (w1 +w2)t + 2(;5)
+m”%@Lm€wﬂ+¢q (24)

Again, considering that the higher frequency terms are
filtered off, we are left with the baseband and difference
frequency term:

A2
Preprir(t) ~ /% (14 (25)
cos ((k1 — k2)Lrep1 — (w1 — w2)t))]

This will provide our detection frequency to compare to the
signal from the IF. Similarly to above, the signal at the IF

will see:
Err(t) = Acos(kiLmeas — wit + @)

+Acos(kaLyera — wat + @)

(26)

and so our Poynting vector calculation yields:
A2 [¢ [1 c082(k1 Lipeas — wit + @)

2
koLyepa — (w1 — wo)t)
€08 (k1 Limeas + koLyefa — (w1 + wa)t + 29)
cos2(koLyefo — wot + @)

aa—

and once again, the assumptions that only the baseband and
difference frequencies are detected result in

A% e
i

o8 (k1 Limeas — k2 Lyepa — (w1 — wa)t)]

COS (kl Lmeas -

+ o+ +

27)

Prrrp(t) = (28)

Our first signal from Equation 25 is a sinusoidally varying
signal locked to the same source as the signal at our interfer-
ometer signal and so the AC portion provides a mixing signal
to demodulate the IF signal in Equation 28. This would result
in a baseband signal that varied as cos (k1 Lyeqs — k2Lre2),
and since ky and k, are known, the change in L,,.,s can be
determined.

However, another way lends itself to high speed signals.
If the measurement mirror is moving, then that movement
will appear as a Doppler Shift in w; = 27 f;, so that w; =
w1 + Aw; and Equation 28 becomes:

A% [e
P )~ — /= 1+
IF,LP() 2 ,LL[

COS (lemeas - k2L7‘€f2 -

(29)
(wl + Awq — wg)t)] .

One way to measure movement then is to count zero
crossings of the cos ((k1 — k2)Lref1 — (w1 — wa)t)) versus
those of the cos (ki Lmeas — k2Lrefa — (w1 + Awy — wo)t)
signal. The two counters will run a the same rate if there is
no movement of the measure surface. If the measure surface
is moving towards the IF, the Doppler Shift will cause a
positive Awq, causing the second counter to count faster. If
the measure surface is moving away from the IF, there will
be a negative Awq, causing the second counter to count move
slowly than the reference.

One may ask why one would count zero crossings of
two AC signals rather than simply demodulate the two. The
answer is simply that it is often much easier to build accurate
high speed zero crossing counters, then high speed demod-
ulators. Furthermore, zero crossing detectors are sensitive to
timing variations, but not amplitude.

V. POSITION SIGNAL GENERATION

In previous sections, we have discussed how the inter-
ference pattern is generated and techniques used to make
this signal immune to various forms of imprecision. In this
section, we will show how the signal arriving at the detector
is turned into a position signal.

We start with the reminder that all position measurements
with an interferometer are relative. The fringes give a change
in position from some starting position. This is analogous to
trying to measure position from velocity measurements: one
must assume a starting position.

IF measurements rely on knowing the wavelength of light,
A, and the wavelength being stable. This is why commercial
interferometers did not emerge until lasers were invented.
It is important to know that as pressure, temperature, hu-
midity,and gas composition change, so does \. Thus, an IF
system is making measurements with a somewhat elastic
ruler.

While we are interested in a distance measurement, we are
really measuring an optical path length (OPL). To properly
translate this optical path back to distance, we must be able to
monitor and compensate for environmental changes. We will
see such compensation methods in the sections that follow,
but for right now we will start with the basic equation for
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interferometer distance measurement (IFM)

>\’UCLC
OFF

Position = FC,,,cqs - WCN 30)

where
e FC,,cqs = Fringe Counts or their equivalent produced
by more modern resolution extension methods,
¢ WCN = Wavelength Compensation Number, described
below,
o OFF = Optics Fold Factor = {2|4|8} depending on the
optics type, and
The Optics Fold Factor represents the number of times that
the beam has traversed the distance to or from the measure-
ment surface. A higher fold factor increases the effective
resolution because every distance change is multiplied up
by the fold factor. From this equation, one can see that the
uncompensated optical resolution, Rp¢cs of the setup is

Avac
Ro ics — 1
Pies T OFF D

However, this base resolution is usually enhanced by further
subdividing the signal with an Electronics Resolution Exten-
sion (ERX) factor. So after adding in this term, Equation 30
becomes

)\'Ull(/’
Positi = FCycas - 2
osition C WCN OFF . ERX (32)
and the resolution of a Fringe Count (FC) becomes
)\vac
Rpc = —————.
F¢ ™ OFF - ERX 53)

Since the wavelength of light from a particular laser is
specified in a vacuum, \,,., we need the correction term,
WCN, for operation in air, where
)\UG,C .

Initial systems provided two methods of entering in the
WCN value. One was a weather station with air tempera-
ture, pressure, and humidity sensors along with a hardwired
computing engine. The other was a set of four thumb-wheel
switches. Either one was used to obtain the last four digits of
the value 0.999xxxx, giving 0.1 ppm resolution to the value.
The system’s user manual contained pages of tables that
listed the last four digits of the WCN value for the expected
range of pressure, temperature, and humidity. Section VIII-G
discusses how one converts these environmental parameters
into changes in \,;,.. However, for this section, it is enough
to realize that generating a distance measurement from our
interference pattern on our optical detectors is all about
counting the passing of cosine waves, which all have a period
related to the laser wavelength, .

The typical Helium Neon (HeNe) laser used in these
applications has a wavelength of A = 632.8 nm. Using
double pass optics (OFF = 4) makes the base optical reso-
lution 632.8/4 = 158.2 nm. The initial systems counted zero
crossings as shown in Figure 13, which divided this base
optical resolution number in half (ERX = 2), resulting in a
resolution of 79.1 nm. Some systems used PLLs to frequency

WCN = (34

Fringe
Counts

f,- (i Af)
-Measuremen , ’ 5 |Zero Crossing| U
p Counter
Detector Detector
MWW,
plifi
Reference f,-f, Zero Crossin, =

Fig. 13.

Generating distance from AC frequency differences.

multiply both reference and measurement signals to further
subdivide the base optical resolution to obtain resolutions as
fine as 5.3 nm (\/120) [13]. However, this technique required
precise PLL circuits with extremely wide dynamic ranges (3
to 90 MHz) and thus was impractical for increased resolution
extension. This might have been solved with high speed
digital PLLs, but for many years the processing speed in
DSP chips was not sufficient for this task. Furthermore, using
both edges of an oscillatory signal can cause errors if the
spacing between leading and trailing edges is not uniform,
so as higher accuracy was required, systems moved to using
leading edges only.

f,- (f+ Af,)
Leading Edge] Stop
Detector MWW Detector Phase

Start _|Counter
A

Phase
Counts

Leading Edge|
Detector

Detector

AV,

Optical
Resolutiol
Counts

Up/Down |
Counter

Fig. 14. Upmultiplying the reference signal to increase delay computation
accuracy.

To interpolate between optical resolution counts in these
systems, a frequency multiplied reference signal (x32) was
used to measure the delay between the reference and mea-
surement signals (Figure 14) and the phase angle [14]. With
this method, the result used to compute the phase angle, ¢
was given by
360 - Delay

32

With requirements for even finer resolution, higher update
rates, and the availability of high speed ASICs, this technique
evolved into using a very high frequency clock to rapidly (>
10 MHz) measure both the period and current phase angle of
both the reference and measure signals and digitally process
the resulting four data values to calculate the instantaneous
phase angle and velocity, while still using a basic up/down
counter to accumulate optical resolution fringe count data.
This resolution extension method, shown in Figure 15, allows
rapid (20 MHz) update rates and 0.1545 nm resolution (ERX
= 1024) with plane mirror optics.

With the advent of modern Field Programmable Gate
Arrays (FPGAs) the above methods have given way to
demodulating the phase as one might have done with an

Ddeg = (35)
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Fig. 16. Phase generation from interference pattern input.

analog PLL, but now entirely digital and at full speed. In
particular, one can use a digital Costas loop like scheme
shown in Figure 16 [15], [16], [17]. In this case, the incoming
phase signal is mixed with sine and cosine signals from a
local oscillator. The mixed signals are integrated over an
integer number of periods generating signals proportional to
the sine and cosine of the phase. These, in turn, can be fed
to an arctangent block which backs out the phase difference,
A, between the LO phase, ¢, and the phase input. This phase
difference is fed into the LO to adjust the phase and the rate
of change of the phase. The computed phase can then be
digitally differenced from the phase of the reference signal.
In fact, with a single reference, phases from many axes can
be differenced simultaneously by the FPGA system at high
speed. The fractional portion of the difference gives the sub-
wavelength accuracy of the measurement, so 10 fractional
bits would have an accuracy of \/4/2'0 = 0.15449 nm.

VI. PRECISION INTERFEROMETRY THROUGH THE YEARS

Although Michelson invented the interferometer in 1887,
it took almost 80 years before displacement interferometers
became commercially available. Since then the development
has progressed, going from 15.8 nm resolution to 0.15 nm
resolution over a period of 40 years. Table I lists a couple
of the scientific developments along with the significant

commercial developments from HP/Agilent during this time-
frame. The table captures some of the key specifications of
interest to servo control system designers. Its no surprise that
the basic trend has been to higher laser power (for more
axes), higher resolutions, higher velocities, faster update
rates, shorter delays, and less timing uncertainty. All but the
higher power and velocity trends help improve closed loop
servo system performance.

VII. APPLICATIONS OF PRECISION INTERFEROMETRY

Over the years there have been a few large users of com-
mercial interferometer systems along with numerous small
users with specialized measurement needs. The following are
some of these uses:

e Servo track writers for hard disk drives were a major
business for many years. The servowriters were used to
write the dedicated and sectored servo information [18].
Eventually, the rise in areal density of the drives, cou-
pled with the lowering of costs, pushed the idea of self
servowriting to fruition largely ending this application
around the turn of the millennium [19].

o Wafer steppers are used to move Silicon wafers for
imaging with device patterns. As the control capability
has improved, these have been replaced by wafer scan-
ners, where the wafers are moved continuously during
the imaging process [20].

o Wafer inspection systems examine wafers after they
have been imaged to verify the work.

o LCD steppers are conceptually similar to wafer step-
pers, but have looser accuracy requirements and move
much larger surfaces.

o Calibrating other measurement devices, as to their an-
gle, straightness, squareness, etc.

o A variety of other metrology applications abound: cal-
ibration of machine tools, coordinate-measuring ma-
chines (CMMs), manufacturing and calibration of en-
coder scales and PZT devices, any distance measure-
ment over long distances where running cables or wires
would be prohibitive or dangerous, specialized custom
measurement machines.

A. Example: Multi-Axis Precision Measurement Configura-
tions

X-Y Stage

¢Mirrors

Dual Pass
Plane Mirror
Interferometers

SN

Z 50% Z]
Non-Polarizing

Beam Splitter

Receiver

Laser Source

Fig. 17. Two-axis plane mirror interferometer configuration
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Linear Optics

Data Rate (kHz)

Output Data

Intro Resolution (nm) Internal External Age (us)
Year Model Normal  Extended  Update Output Fixed  Variable Contribution
1887 A.A. Michelson’s Interferometer Basic Measurement Concept
Practical light source for
1960 Bell Labs’ HeNe Laser longer measurements
1964 1st Commercial Displacement Interferometer (Airborne Instruments) Proof of commercial viability for product
1966 HP 5505A 158 15.8 0.01 na na na 2 frequency Interferometry
Multi-axis, higher resolution
1975 HP 10760A 158 15.8 1800 5 SW ~200 and update rate
HP 10764B
1977e /10762A 158 10.5 <22500  <22500 Higher Resolution and update/output rate
Higher Resolution, Lower cost,
1986 HP 5507A 9.9 na 1800 1800—20A 1.7 0.3 smaller form factor, higher reliability
Higher stage velocity (0.5 m/s with
1988 HP 5517B Linear Optics)
Higher stage velocity (0.7 m/s with
1991 HP 5517C Linear Optics)
Reduced axis to axis cosine error, smaller
1991 multi-axis interferometers introduced footprint for pitch/yaw measurements
Reduced data age variation, higher
1994 HP 10889B 49 na 10000 10000 — 20 A 1.2 0.01 update rate
Higher resolution, reduced
1994 HP 10897A 1.2 na 10000 10000 1.2 0.001 data age uncertainty
Higher stage velocity (1.0 m/s with
1996 Agilent 5517D Linear Optics)
Higher Resolution, Higher Data rate,
2002 Agilent N1231A  0.62 na 20000 4000 0.52 0.025 Multi-Axis Electronics
2004 Agilent N1231B  0.31 na 20000 20000 0.8 0.001 Flexible hardware interface
Higher stage velocity (2.1 m/s with
2004 Agilent 5517FL Linear Optics)
Reduced Optics Non-Linearity, Higher
2006 fully integrated multi-axis optics introduced optical efficiency
Higher stage velocity (4.1 m/s with Linear
2006 Agilent NI1211A Optics), Fiber delivery to vacuum
Integrated high sensitivity receivers,
2007 Agilent N1225A  0.31 na 10000 10000 3.15 non-linearity correction
Higher power for high stage velocity
2007 Agilent 5517GL (2.2 m/s with Linear Optics)
TABLE I

INTERFEROMETRY THROUGH THE YEARS. NOTE THAT RESOLUTION IS TWO TIMES SMALLER WHEN USING PLANE MIRROR OPTICS. SW STANDS FOR

SOFTWARE ONLY UPDATES. “A” STANDS FOR 10 V ANALOG OUTPUT FOR SERVO APPLICATIONS.

Dual Pass X-Y Stage
Plane Mirror I n Yaw (2)
Interferometers A /\

= 0,
P .g 33% D 5
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67% Mirrors
33%
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Fig. 18. Yaw measurement of x-y stage with discrete interferometers

One of the great benefits of precision interferometry for
position measurement is that because the measurements are
done at a distance, multiple axes can be measured with
the same system, by splitting the laser beam and directing
it off of different surfaces and back to multiple receivers.
This can be seen in the two-axis configuration shown in
Figure 17, where a single beam is split and directed at

>
Stage Cable, friction,
i ble,
noiso (wi | e (C LN
oy, | poweramp noise
Scan Control Stage
Reference Stage In | wafer Position
Controller Stage
/A I:J ol VAVAN z

Optical Path
Noise (w,)
Turbulence,
essu ariation,

humidity

Position

Measurement Sensor WM

Noise (v) | Opical detector

electronics noise,

Fig. 19. Using an interferometer in a stage position feedback loop. This
diagram shows a SISO application, but IFs are used to measure 6 or more
degrees of freedom.

polarizing beam splitter based interferometers. Each of these
beams is reflected off of a planar mirrors on the side of a
moving stage, resulting in position measurements for the x
and y axes. In Figure 18, this system is augmented further
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by splitting the beam three ways, allowing for differential
measurements in the y direction that can yield a measurement
of the stage yaw.

While these two diagrams are by no means exhaustive,
they do provide some insight into the design freedom given
by IF measurements on moving objects. Considerations have
to be made with respect to the:

¢ system setup to be employed, depending upon needed
accuracy and axes to be measured,

o degrees of freedom, basically how many axes will be
measured,

o speed and accuracy requirements, how fast those results
need to be provided. Calibration measurements typically
require far less system speed and allow for considerably
higher latency than measurements used to close the loop
in precision motion systems.

B. Wafer Stage Measurements

N

=—

/
D e —

Fig. 20. Wafer stage system measured with interferometer.

The bulk of interferometers systems are used in the IC
photolithography industry [20], [21]. Here, very precise
machines move an X-Y stage under an optical column. What
is critical is the location of the stage relative to the optical
column, and the repeatability of this measurement. So these
systems use laser interferometers to measure the X and Y
positions of the stage and the column, as well as the pitch and
yaw of these items. Some even measure the vertical direction
of the stage. Figure 20 shows the basic setup without the
optical column which would obscure the stage.

VIII. THE MODERN INTERFEROMETER

The improvements to the basic Michelson interferometer
described in Section III give the tools to fix a variety of
issues, and modern interferometers are built with combi-
nations of these improvements. However, as accuracy and
speed requirements increase, these first order fixes become
susceptible to other errors. These issues will be delineated in
this section, along with designs that compensate for them. In
all cases, it is assumed that the interferometers use multiple
frequencies and polarizations of light, and that the beam
passes through a PBS some number of times to generate
interference fringes. We will see that there are a lot of issues
remaining in making our distance measurement immune
from inaccuracies and noise, as well as some clever designs
to overcome these hurdles.

IF measurements depend on knowing the phase difference
between two light beams and their wavelength. Anything that
affects the apparent phase or wavelength affects the accuracy
of the measurement. Thus, despite their utility, there are

substantial issues in the use of interferometers for precision
measurement systems. These issues must be understood to
appreciate the solutions that have been applied already as
well as new ones that are being proposed. A non-exhaustive
list of sources of errors and other issues [22]:

o Intrinsic: laser wavelength accuracy, measurement res-
olution, optics non-linearity, computational issues, de-
grees of freedom, angular range, velocity requirements
speed and accuracy requirements.

o Environmental: optical thermal drift, atmospheric com-
pensation, material thermal expansion, turbulence.

o Installation: Deadpath error, cosine error, Abbé error.

o Feedback loop usage: data age, interfacing with control
system.

The above issues will be described individually in the
following sections.

A. Laser wavelength Accuracy

Michelson [3] used a sodium flame for his monochromatic
light source, and although it contained a narrow range of
optical frequencies, its stability is not sufficient for modern
measurements. With the invention of lasers, and subsequent
frequency stabilization methods [23], [24], [25], one now
had a light source that was both single frequency and
highly collimated, perfectly suited for use in interferometry.
Thus for vacuum applications, one would have a very small
uncertainty for the wavelength value. A discussion of the
atmospheric effects on the wavelength of the measured beam
is in Section VIII-G.

B. Optics Non-Linearity

Nonlinearity Error (degrees of phase)
o a N
1 1
T T

Optical Path Length Change (degrees of phase)

Fig. 21.  Worst-case error resulting from imperfect separation of two beam
components. Recreated from Chapter 12, Figure 48 of [26].

The discussion so far has been about the intended signals
reaching the detector, interfering, and creating a measure-
ment signal, and the phase of that signal being linearly
proportional to the motion of the mirror. And, for the
most part, this model worked well until the measurement
resolution became finer than 4 nm. At this level, the effects
of unintended signals reaching the detector started to be
seen. Real world interferometers contain additional optical
paths due to signal leakage of one polarization into the other
polarization’s optical path. When these unintended signals
reach the detector, they distort the signal from the ideal
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[27], [28], [29]. These signals and their effects are covered
in [30] (which will be presented later in this session), but in
brief, the unintended signals cause periodic non-linearities
in the transfer function between the motion of the mirror
and the output position value from the laser electronics.
The errors do not accumulate, but cycle about zero with a
period of one wavelength of optical path length change as
illustrated in Figure 21 [26]. To reduce these errors, modern
interferometers use higher quality PBSs and wave plates.
Electronic methods have also been devised to measure and
correct these errors [31].

C. Computational Issues

Modern interferometer systems convert the analog light
signals into digital signals and process the resulting data
stream with digital electronics. This introduces several is-
sues typically associated with real time computation. In
this section, we will discuss the issues that are internal to
the interferometer processing itself. A complimentary set
of issues involve interfacing the digital electronics of the
interferometer with the system that will be making use of
it, such as a control system. Those will be addressed in
Section IX-B. Here we will discuss

¢ quantization error,

« computational delay, and

o limited measurement range.

Quantization error is essentially the timing resolution that
the system uses to measure the phase change between the
measurement and reference signals. For most systems this is
sufficiently small to not be a real issue, but as IC line widths
continue to decrease, even 0.15 nm resolution of modern
electronics will not be fine enough for the position feedback
to the photo-lithography equipment’s servo systems. But
other applications without these tight resolution requirements
will have more resolution than they need.

The computational delay causes the most complications
for servo systems. As laser IF systems have improved to
compensate for optical issues and improve resolution, the
required computations have increased. Faster electronics help
offset this, but the overall computation times have gone
up in the latest systems. Fortunately, what matters most
is the variation in these computation times. Fixed delays
(generally referred to as Data Age) can often be compensated
by adjusting the position values by the velocity times the
delay. However, the variable portion of the data age can not
be corrected, and it shows up as measurement uncertainty.
Efforts are made to minimize this delay uncertainty.

With the high resolution represented by the LSB of a
digital position word, it takes a lot of bits to keep track
of a stage of moderate size (32 bits allows only +/- 331
mm at A/4096 resolution). Early systems provided 28 bits of
position information, which was sufficient for most systems
then due to the lower resolution (0 to 21 m at A/8 resolution).
Modern laser systems provide 32 to 36 bits of position infor-
mation, which still covers a wide range when all bits are used
(+/- 5.3 m at A/4096 resolution). So designers must balance
resolution, word width, dynamic range, processing power,

and computation time to match their system’s performance
requirements (although with the relatively low cost 64-bit
computing platforms available today, this is less of an issue).

D. Degrees of Freedom

There are two aspects to this topic:
1) For a given axis, how many degress of freedom
does the mirror move?
2) For an overall system, how many degrees of
freedom does the system measure?

Ideally, the reflector for each interferometer axis only
moves in the direction being measured, or intentionally al-
lowed for in the case of plane mirrors. However this is rarely
the case, and cube corners move laterally to the beam, or
plane mirrors pitch and yaw. In both of these cases, the result
is lateral displacement of the return beam, which causes
reduced signal strength to the detector and/or added cosine
error. The WOW interferometer discussed below implements
a solution to address the first impact of this unwanted motion.
Adding multiple measurement axes to the system either with
additional interferometers or through the use of multi-axis
interferometers, addresses the second impact.

Reference
] Reflcr

N4 | ]

=

Laser
Source

Detector

N4
e Reflector

on Moving
Object

Fig. 22. A WOW interferometer uses four passes to cancel the effects of
walkoff as well as angle due to stage rotation. The

Although the PMI improved the measurement mirror’s
angular range, there is still a need for additional angular
range at longer distances. The addition of a prism at the
output of the interferometer sends the beam back through
the optics where any walkoff that occurred in one direction
now occurs in the other direction. In a With Out Walk-Off
(WOW) interferometer [32], the result is a final output beam
that does not move when the measurement mirror pitches or
yaws and with twice the resolution as an added bonus. The
same concept can be applied to an interferometer using cube
corner reflectors to allow greater lateral movement of the
cube corner while maintaining the tolerance for large angular
variation of this reflector. With a WOW interferometer, the
angular range is limited by the size of the optics instead of
the beam diameter for any given measurement distance.

Figure 18 above shows an example of using two inter-
ferometers to measure the yaw of a stage along with the
X and Y location. The information obtained from the yaw
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Fig. 23.  Agilent Z4399 A Three-Axis Interferometer: On the left is the
device. On the right is the device with representation of the laser beams.
(Recreated from Figures 242 and 243 of [33].)

data can be used to correct for the resulting cosine error
changes as well as for the precise location of the point
of interest on the stage. This implementation of a yaw
measurement has both a plus and some minuses. On the
plus side, the large separation between the two measurement
points means the angular measurement has a high resolution.
On the minus side, the use of two interferometers means
that there will be some difference in cosine error between
the two measurements, and also that a larger stage mirror
will be required. To address both of these minuses, as well
as the cost and installation complexity of using multiple
interferometers, multi-axis interferometers are now routinely
used to measure both pitch and yaw of a stage. And systems
with multiple multi-axis interferometers are used to fully
monitor all degrees of freedom.

E. Velocity Requirements

For a number of reasons, system velocity requirements
have gone up over the years. For DC interferometry, there
are no fundamental limits yet to the maximum velocity that
the system can track. However for AC interferometry, the
split frequency presents a hard speed limit for one direction
of travel. Since the basic equation for the Doppler frequency
shiftis f,, = fi£Af; (or f,, = f1E2Af; for two pass IFs),
when A f; > f1, then the detected frequency goes through 0
Hz and becomes “negative”. But it is difficult (economically
impossible?) to monitor this transition and keep track of the
sign of f,,, and thus actual distance, once it has gone to 0.

Section VI shows that the laser head split frequency has
increased over the years to accommodate the higher velocity
requirements.

Practical experience has shown that using an Acoustic
Optic Modulator allows greater control and range of split
frequencies than simply using the Zeeman Effect on its own.
However, as the split frequency and velocity go up, the
reference and measurement signal periods go down. And any
fixed timing jitter in the detector circuits becomes a larger
percentage of these periods, and thus can limit the resolution
and accuracy of the measurement.

F. Optical Thermal Drift

Single pass IFs have balanced paths, so interferometer
temperature changes affected both beams almost equally, and
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Plates
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Fig. 24. Laser beam paths in a two frequency balanced path PMI

thus have minimal impact on the measurement. The initial
two pass interferometer shown in Figure 9 does not have
balanced paths, so any temperature change causes a greater
phase shift to one beam path than the other, and thus a
significant measurement error. The initial PMI design has
a temperature coefficient of ~ 500 nm / °C due to the
measurement beam transversing about twice as much glass
as the reference beam. The revised two pass interferometer
of Figure 24 adds a quarter waveplate to the reference path
and changes the reference mirror from a cube corner to
a plane mirror. These changes make both paths identical
and reduce the interferometers temperature coefficient to less
than 40 nm / °C, a 12.5x reduction. This design change is
carried forward with new interferometer design with one goal
being to keep the two optical paths as equal as possible so
any environmental changes are common mode and thus self
canceling. However the realities of interferometer fabrication
mean that there will always be some path length differences
and thus some measurement change that correlates with
temperature .

G. Atmospheric Compensation

Section V introduced the WCN term as the wavelength
compensation factor, and Equation 34 defines it as the ratio of
Aair 10 Apae. If one knows the index of refraction of air, then
one can calculate the compensation number as the reciprocal
of the index of refraction. In 1966, B. Edlén made numerous
measurements of the air pressure, temperature, humidity,
and gas composition, and created an equation, the Edlén
equation [34], that relates the index of refraction to these
measured parameters. In brief, the Edlén Equation [35], [36],
[37], [38] describes the variability of the index of refraction
of the optical path:

P 1+eP(1—-aT) P

~ K(\) =
T 1+ 2 )

n—1=K(}\) T

(36)
where n — 1 is the deviation of the refractive index away
from 1, K(\) is a wavelength dependent scaling factor, and
p= % is the density of air.

The constant K is the bulwark of the Edlén relation which
has a wavelength dependence for a standard atmosphere

(P ~ 10° Pa, T = 300°K) including a correction for
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relative humidity. For A = 633 nm, the value of K %
is approximately 3 - 10~* which means K =~ 9 - 10~
°Kelvin/Pascal at standard temperature and pressure (STP)).
Thus a ImK change in temperature or a 1/3 Pa change in
pressure results in a change in index n of 1 ppB. Note that
motion of a bluff body (such as one’s hand) moving at 1
m/sec can induce one half (%) Pa change of presser.

Scaling these relations up to larger environmental changes,
one can derive some basic rules of thumb that can be used to
approximate the change in wavelength due to environmental
changes [22]:

o | ppm per 1 Deg C change in air temp

o | ppm per 2.5 mmHg change in air pressure

o | ppm per 80% change in air relative humidity

Relating these back to IF measurements, if continuous updat-
ing of a compensation factor is not done, and the environment
changes by 0.5 deg C, 0.5 mmHg, and 20% RH, then the
measurement will be off by 0.95 ppm, or 0.95 um per meter
of distance between the interferometer and stage mirror.

So one should use some form of compensation, and
the Edlén equation will provide the index of refraction
for the air, and thus a compensation number, based upon
quantities that can be measured. Even the early versions of
interferometer systems provided a means to either measure
these parameters (an indoor weather station) or enter a
compensation number that was obtained from a table based
on the user’s own measurement (or estimation) of them. Use
of this compensation method allows automatic (or manual)
calibration of the overall atmospheric conditions. However,
what this method cannot resolve is turbulence (discussed
more in Section X), which is a much more localized effect
of air pressure variation in the optical beam path.

H. Material Thermal Expansion Issues

Both the interferometer itself and a physical object being
measured will have thermal expansion issues. Ideally, the
interferometer and the object being measured can be in a
temperature controlled environment, however, much of the
time this is not possible. While it is possible to compensate
for much of the interferometer’s variation by balancing the
optical path (see Section VIII-F), the dimension change in
the object can be calibrated out by knowing the coefficient
of thermal expansion (CTE), «, of the object. Two such
applications of distance interferometers are calibration of
machine tools and coordinate-measuring machines (CMMs).
By standards, the length measurement values have been tied
to the standard temperature of 20 °C. When the object to
be measured/calibrated is not at 20 °C, the measured value
must be recalibrated back to what it would have been at
20 °C. For example, if one were measuring the length of
an object, L, then the true length at standard temperature,
Tom (= 20°C) could be obtained via

L=Lyr(1—a(T —Thom)) 37)

The material temperature compensation factor is usually
combined with the atmospheric compensation factor used to
scale the vacuum wavelength value used in the conversion

equation to the wavelength of the laser light in the current
air environment.

1. Deadpath Error
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Fig. 25. Deadpath error in an IF measurement. The initial measurement
on top includes a distance, D, which is included in the “zero” position. The
lower measurement has a total distance of D + L, but since the D distance
is the “zero” the IF only counts L. Any atmospheric disturbance that affects
the optical path in D will contribute to error in the system.

A diagram of Deadpath error [26] is shown in Figure 25.
The Deadpath, D, is the part of the optical path that is
not part of the measurement, but instead part of the “zero”
position. The Deadpath distance should be a part of our IF
measurement, so any compensation changes get applied to it
as well. To include Deadpath in Equation 32, we both add
it in, and subtract it out to end up with

Position = (FCpeas + FCpeadpatn) - WCN - Rpc — D,
(38)
where
o FC,,cqs = Accumulated fringe counts from the starting
position of the measurement and
e FCpeadpatn = Fringe counts that would have been
accumulated moving from the zero Deadpath (D = 0)
position to the actual starting position of the measure-
ment.
To calculate the FCpeuqparn, value, we use Equation 32,
substituting D for Position and defining WCN, as the
compensation value at the system reset time. Thus,

D
WCNy - Rpe
Substituting (39) into (38), separating terms, and simplifying
yields

FCDeadpath = (39)

WCN

Position = FCpy0qs - WCNR D|— —
osition FC+ (WCNO

1> . (40)
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From this we can see that the first term of (40) is identical to
(32) and the second term is the correction factor for having
Deadpath in the system.

To help one determine if Deadpath correction is needed in
any given situation, one needs a quick way to estimate the
magnitude of this correction term. Section VIII-G presented
rules of thumb for obtaining an estimate for a AWCN value.
Rearranging the Deadpath correction term from Equation 40,

using the definition of AWCN:
AWCN = WCN — WCNy, 41)

and the knowledge that WCN, will always be within about
300 ppm of 1, the magnitude of the Deadpath error can be

estimated as [26]
Error peadpath = D x AWCN (42)

This equation tells us that we want to minimize Deadpath and
changes to the compensation number in order to minimize
this error source.

J. Cosine Error

Distance Measured by IF (L)

Laser Measurement AXis

Axis of Travel

»
>

Distance Traveled on Axis of Travel (L)

Fig. 26. Diagram of cosine error as diagrammed in [26].

All distance measurements are prone to cosine error, dia-
grammed in Figure 26, which occurs when the measurement
axis is not perfectly parallel with the line connecting the two
points that are being measured. The actual length traveled,
L, is smaller than the apparent distance traveled, Lg by

L = Lgcosf 43)
which means that

Ees=L—Ls=Lg(cosf —1). (44)

The cosine error is usually characterized by its magnitude,
‘Ecos| =Lg (1 — COS 0) . 45)

Proper installation and optical alignment techniques and
tools are needed to minimize this error source. Active pitch
and yaw measurements (which can be made using multiple
beams) can also be used to characterize # and remove the
cosine error in software.

The relevant optics manuals provide detailed alignment
techniques to minimize cosine error, generally getting it
to less than 0.05 ppm (mis-alignment angle less than 0.35
mRad).

Distance Traveled on Desired Axis

»
'

e |

A

Desired
Measurement
Axis

Laser .
Measurement |™
Axis Distance Measured by IF

Fig. 27. Diagram of Abbé error as diagrammed in [39].

K. Abbé Error

All distance measurements are also prone to Abbé er-
ror [26], [39], shown in Figure 27. Abbé error is caused by
a lateral offset, L, between the desired axis of measurement
and the actual axis of measurement, as well as a rotation, 6,
of the measurement mirror away from being perpendicular
from the axis of measurement. The resultant Abbé error, &
is defined as:

¢ = Ltané. (46)

A general rule of thumb is that Abbé error is approx-
imately 0.1 pm per 20 mm of offset for each arc-second
of angular motion [26]. While any type of displacement
transducer is susceptible to Abbé error, laser interferometers
can minimize this by placing the measurement axis closer
to the desired measurement axis or by actively measuring
the angle, 0, and compensating for the error in software.
Pitch and yaw measurements, which can be accomplished
with multiple IF beams, also enable measurement of ¢ and
compensation for this.

IX. USING INTERFEROMETER MEASUREMENTS IN
FEEDBACK LOOPS

While precision IF measurements can be used for static
measurements, the ability to tie these systems into feedback
loops has dramatically raised their utility. Non-contact, multi-
dimensional, measurements provide a lot of advantages, and
with resolution in the sub-nm range, and sample rates up
to 20 MHz, there are few control problems that can outrun
the data at sample rate provided. (For example, the Agilent
NI1231B PCI Three-Axis Board with External Sampling
updates position and velocity values for three axes of mea-
surement at 20 MHz, with 0.15 nm resolution, on 32 or 36
bit data words [40].) Control using precision interferometers
allow enough measurement precision to push new control
methodologies as will be described in [41].

However, as with all control systems, certain issues re-
main. In particular, data age (or the latency in the interferom-
eter from the time that position is sensed until it is available
to the control computer, is described in Section IX-A. Issues
of digital interconnect between interferometers and digital
control systems are discussed briefly in Section IX-B.
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A. Data Age Issues (time delay of measurement)

As system performance requirements have improved, the
time required to process the data and generate a position
value, as well as the variation in this time, have become
more of an issue. When systems are moving slowly or have
low servo update rates, then any uncertainty introduced by
several microseconds of delay or hundreds of ns variation
in this delay are insignificant. But as systems move faster,
then 50 ns of timing uncertainty will introduce 50 nm of
measurement uncertainty when moving at 1 m/s.

Even with a 20 MHz sample rate, the 50 ns sample
period gives opportunity for up to a full sample period of
delay in handing off the digital outputs to another processor.
To minimize this, the Agilent N1231B “external hardware
sample inputs are synchronized to a 160 MHz clock. The
circuits then interpolate between two successive internal
values so the position read over the PCI bus corresponds
to the sample time plus the sample delay time +4 ns.” [26]

B. Interfacing With Control System

Another issue facing use of interferometers is that due to
the high resolution, the position value contains many bits.
In general, commercial servo control systems are setup to
handle A quad B and Sin/Cos inputs, but only a few directly
accept large digital words. So some provision must be created
to transfer the digital word to the control system. Since
there is usually some processor within the control system,
it can extend the range of the measurement by adding bits
to the left of the transferred position word provided the
word size exceeds some minimum number of bits. This
word size can be determined from the servo update rate, the
system’s maximum velocity, and the resolution of the laser
measurement system using the following relationship (based
on making sure the stage doesn’t move more than 1/2 of the
dynamic range of the word size in 1 servo period’s time so
the controller will be able to determine in which direction
the motion occurred).

Umax

oN—1  _“ma® 47)

Resolution x
fS,ser'Uo

where N is the number of bits required in the position word,
Umae 1S the maximum velocity of the object being measured,
and fs servo 1S the sample rate of the servo system.
Moreover, beyond the word length requirements, there
is the pervasive issue of interfacing two digital systems
at high speed. Real time data must be handed off from
the interferometer processing boards to the control system
with minimal latency and in a synchronous manner. This
often requires a lot of custom programming between the
interferometer vendor and the customer buying the systems.

X. TURBULENCE

As discussed all through this article, accurate measure-
ments require an accurate knowledge of the laser wave-
length, A, across the entire length of the measurement path.
Basic atmospheric compensation can be accomplished with
a weather station that measured pressure, temperature, and

Fig. 28. Turbulence “bubble” crossing interferometer beam.
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Fig. 29.  Conceptual block diagram of wafer stage interferometer (IF)
measurement disturbed by turbulence.

humidity as described in Section VIII-G. However, this can
only make adjustments for static or overall fluctuations.
Turbulence in the measurement beam is more insidious in
that it can cause a dynamic change in air pressure across
the measurement beam, thereby distorting the wavelength
(Figure 28). Two frequency interferometry provides some
immunity [12], but as required precision has increased,
the minute effects of turbulence have remained. Certainly,
turbulence can be minimized in temperature and humidity
controlled environments, but movement of objects through
any medium, be it liquid or air, causes pressure waves. In
high precision, high speed control systems, such as wafer
scanners (Figure 29, the turbulence effects can distort the
measurement on the order of tens of nanometers, which is
too much for the line spacing of current generation computer
chips.

A. Alternate Methods: Grid Plates

Fig. 30. Example of grating/scale method

Since turbulence happens along the beam path, the longer
the beam path, the more susceptible the measurement is to
turbulence. One way to minimize this problem is to use a
different type of interferometer in combination with grating
plates placed in proximity to the wafer scanner and in parallel
with the main plane of motion as shown in Figure 30 [42],

3707



[43]. The resolution of these systems is limited by the
size of the features on the grating, rather than the optical
wavelength, but the optical paths are quite short, minimizing
but not eliminating, the effects of turbulence. The downside
of this method is that it requires that either gratings be on the
moving stage or lasers be on the moving stage. If lasers are
placed on the stage, the cabling requirements to the stage go
up dramatically, as does the drag and offset forces caused
by the cables. If the gratings are on the stage, then these
take up much of the area of the stage, which is supposed
to mostly hold the wafer. Furthermore, large glass gratings
with nanometer precision require incredible manufacturing
precision, and at nanometer scales, glass distorts and flows,
so such a system must be repeatedly recalibrated.

B. Closed-Loop Interferometer (solution to some problems
with current interferometer systems)

Stationary Stage, Turbulence Due to Air Cannon

—— IF Only Measurement
—— |F + Kalman Filter

Measured Position (nm)

Turbulence Estimate Accounts for Cannon Shot Disturbances

—— IF Only Measurement
10 —— Turbulence Estimate inside KF

Measured Position (nm)

Time (s)

Fig. 31. Experimental results from QP algorithm [7] with a stationary
stage and interferometer beam disturbed by air cannon shots.

A new interferometry method known as quintessential
phase, QP, comes from the realization that turbulence bubbles
such the one in Figure 28 are not noise and do not materialize
instantly “out of thin air.” They are in fact dynamic processes
that can be detected (using a multi-segment detector), and if
they can be detected, they can be tracked, using an Extended
Kalman Filter (EKF) [44]. This work is described in detail
in [7], but Figure 31 shows the method being used on a
static stage test with turbulence pulses from an air cannon
across the measurement beam. In short, interferometry using

a single detector (red line) cannot detect the change in the
wavefront as being anything different from a position change.
The multi-segment detector makes the turbulence induced
change in the wavefront observable, allowing the EKF to
model it as turbulence (black line), and then remove this
effect from the position estimate (green line).

XI. CONCLUSIONS

This tutorial has hopefully given the reader an introduc-
tion to laser interferometers as a measurement device with
strong applications to feedback loops. The ability to make
non-contact, highly precise, multi-dimensional, high speed
measurements of moving physical objects should be quite
attractive to most control engineers. The bulk of the docu-
ment has been spent on giving the reader an understanding
of how these position transducers work, what can limit their
accuracy, and the incredible design innovations that have
gone into improving the accuracy, robustness, and speed of
these devices.
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