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Different Perceptions of PID Control in the Mechatronic and Process
Control Worlds

Daniel Y. Abramovitch*

Abstract—1t is not uncommon for graduate students on the
mechatronics side of the control world to treat the Proportional
plus Integral plus Derivative (PID) controller with a certain
amount of disdain. This is not surprising since most control texts
from this end of the control world treat PIDs as simple, basic
structures, to be quickly replaced by more advanced methods.
To that end, these texts devote only a handful of pages to the
subject. It seems that — at least in the mechatronics world -
PIDs are considered too simple for much interest in academia
while practicing engineers do not seem to care why they were
working.

This is a far cry from the treatment of PIDs in the chemical
and bio-process control worlds (CPC and BPC, respectively).
At this end of the control spectrum, PID controllers are
studied in far more depth obtaining entire books or book
series. Despite this volumetric expansion of material, it seems
that in the latter worlds, many of the issues and concerns
one sees in the mechatronic world are treated as obscure
corner cases. Depending upon the teaching text, issues of
sampling and digital representation may have been completely
omitted. There were other surprises. While PIDs were almost
universal and standard, they were almost never unified or
standardized. Furthermore, what seemed to limit performance
was not the structure of the controller itself, but the lack
of accurate system/process models based on repeated physical
system measurements.

However, the mechatronic and process PID goals and foibles
were not that different once one considered the different system,
time constant, and measurement constraints. We will discuss
these issues with the goal of getting a more unified view of PIDs
across our application domains. We will provide a handful of
common PID forms and show how they are related, so that
we can approach any PID structure with the same analytical
approach. We will finally look forward to how PIDs can be used,
not only as a fundamental teaching tool for explaining control
outside of our research circles, but as a critical component for
advanced control methods.

I. MOTIVATION: FRAMING THE PAPER

Proportional plus integral plus derivative (PID) control
is treated very differently in the mechatronic and process
control worlds. This can be seen in how the topic is discussed
in textbooks from the different areas. In the electrome-
chanical/mechatronic based control books PIDs are typically
relegated to a few pages or a small section in one chapter. We
refer the reader to the classic texts by Ogata [1] or Franklin,
Powell, and Emami-Naeni [2] as well a host of others [3], [4],
[5]. It is not even mentioned in [6] or [7]. By a later edition
of Ogata’s Modern Control Engineering [8], it gets a few
more pages but most of those are in the problem section of
the chapter. In the classic book by Kuo [9] there is a section
on PID control, and later on a discussion of discretization
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(using the backwards rectangular rule). Curiously, their first
example is of a process which includes an integrator, and so
they choose to only use PD control. In Kuo’s book on digital
control [10], there are again a few pages on digital PID
control. Here the author chooses to discretize the integrator
with a trapezoidal rule, but uses the backwards rectangular
rule for discretizing the derivative term. Perhaps the deepest
treatment (and signs of work to come) are in [11] where
the topic gets a full 20 pages, [12] with 18 pages, [13] and
[14] where it gets its own 18-page and 25-page chapters,
respectively. Two books on writing software for control,
specifically of mechanical systems [15], [16] spend only a
few pages on PID controllers, despite having a focus on
practical implementation of controllers.

On the other hand, the process control view often has en-
tire books [17] (or series) [18], [19], [20] on PID controllers.
Even when the book is not specifically about PID controllers,
but instead about process control, the texts feature multiple
chapters on discussions of PID control [21], [22], [23], [24],
[25], [26]. Furthermore, the descriptions and use of PID
methods permeate through these entire texts. A recent paper
by Hégglund and Guzmén went so far as to be entitled, Give
us PID controllers and we can control the world [27].
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Fig. 1. A mechatronic control loop with a PID and filter implemented
in discrete time. The PID handles the rigid body/baseband portion of the
plant response while the filter is in place to equalize the resonances and
anti-resonances of the physical system.

Looking into these texts, the discrepancy in the treat-
ment of PID controllers goes further. In the process control
texts, discretization is rarely discussed while it prominently
features in any mechatronic digital control book (if PID
controllers are discussed there at all). There are other fun-
damental discrepancies, such as how the PID parameters are
specified and how the plant is characterized. The net result
is that anyone trying to learn about PID control for the first
time goes down one of two divergent paths. We offer the
conjecture that as the field was emerging different dominant
models in mechatronic systems versus process systems af-
fected these views. Accepting that, can we return to common
principles and see which ones apply in any situation? If we
can, then we have a more common framework for discussing



PID control, both amongst ourselves and with scientists and
engineers working adjacently to the control field.

For this author — emerging with graduate school training
that barely referenced PID controllers — it seemed as if these
were relics of the simple past. System identification was to
be done with regression on discrete-time transfer function
parameters in some sort of ARMA, ARX, ARMAX, etc.
form. These would then be mapped to state-space canonical
forms where all the modern control tools could be brought to
bear. However, the world of industrial research showed that
these methods often failed on lightly damped mechatronic
systems. Instead, one encountered practical solutions that
included some combination of a controller (perhaps a PID
or one of its close relatives) plus some filters, as shown in
Figure 1. The absence of modern control methods in these
applications continues to this day. By the same token, the
prevalence of PID controllers in industry should make one
ask why such a supposedly under-powered and outdated
method still powers a vast majority of industrial control
loops.

This paper will explore these differences and propose a
historical basis for these very different perspectives. That
being done, the aim is to return discussions of PID control
back to a more common framework. Within the controls
community, the lack of a common framework might seem
like different dialects of the same language. We can translate
between frameworks with enough math (although often we
do not). However, in industry or with co-workers who are
not control engineers, a change of framework is often viewed
as something fundamental, not simply a ‘“control dialect”.
(How would a non-expert recognize these differences?) This
creates a serious issue in outreach, since many scientists and
non-control engineers understand feedback control only as a
PID controller (even when the controller itself may be doing
far more).

If we wish to restore and even amplify the influence of
feedback control principles beyond our community, to be
at the center of discussions on automation and machine
intelligence, we need to make it easier for scientists and
engineers outside our community to embrace the principles.
This must be the case even if they cannot fully internalize
the math. Unifying inconsistent frameworks on the most
ubiquitous control methodology is one start.

II. THE LESSONS OF PHASE-LOCKED LOOPS
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Fig. 2. A classical mixing phase-locked loop (PLL).
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Fig. 3.  The baseband model of a classical mixing PLL.

Perhaps the most ubiquitous human-built feedback loop is
the phase-locked loop (PLL). This is an electronic synchro-
nization device that has its origins in the 1930s [28] but now
ends up in every digital watch, phone, tablet, computer in our
lives. It is fundamentally responsible for keeping timing in
almost all electronic circuits (both analog and digital) [29]. A
classical mixing PLL is diagrammed in Figure 2. With a few
trigonometric identities and some low-pass filters not shown
in most PLL texts, this can be reduced to the baseband model
shown in Figure 3. This is still a nonlinear model, but the
sine is a sector 1-3 nonlinearity [29] which is smooth and
well behaved. More importantly for our discussion here, the
voltage-controlled oscillator (VCO) which converts a voltage
into an oscillation frequency is modeled as an integrator (to
get from frequency back to phase), shown in (1).
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Because the plant is an integrator, one does not need to
include an integrator in the controller — in this case the
loop filter, F'(s) shown in Figure 3. However, it is usually
desirable to track slow changes in frequency and this can be
viewed as a ramp input to the phase detector. For this PLL
designers usually add a second integrator (2),
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which makes the controller a PI controller and the open-loop
response into a double integrator at low frequency and an in-
tegrator at high frequency. Because the plant can be modeled
as an integrator, the control is usually straightforward and
the real effort in PLL design is in designing creative phase
detectors and low-drift VCOs. A look at most PLL circuit
diagrams will also reveal a lot of filters that do not show up
in the PLL block diagrams. These are simply considered part
of what is needed to turn the loop into one that is suitable
for a simple control law.

PLLs teach several immediate lessons about practical
feedback loops that generalize to many other loops. The
first is that practicing engineers may work with complex
systems, but they tend to make the feedback loops in those
systems simple. These simple loops maintain intuition and
therefore allow one to debug the system. The second lesson
is that these simple loops are almost always low order;
first or second when possible. In the case of PLLs second



order loops, in which the loop filter (controller) contains an
integrator are most prevalent for reasons discussed above.
This means that — whether they are described as such or not
in the PLL texts, the controllers are proportional plus integral
(PI) controllers.

The next lessons are a bit more obscure, but there. The
third one is that even when the signals are not sinusoids (as
in for digital communication, digital circuit timing, or speed
control applications), the baseband (modulation domain)
analysis eventually looks like an intuitive argument for the
sector 1-3 nonlinearity and second-order system analysis of
the above PLLs. Our final lesson comes from actual PLL
circuits [29] where there are many filters not described in
the texts. From a modern control perspective, we might
want to consider these filters a response to the full state
dynamics of the system, but we see that PLL engineers view
them as removing the dynamics from the problem. In other
words, even though the actual problem is higher order, these
clever engineers, using a divide-and-conquer strategy, “beat”
the problem into a second-order model. Finally, anywhere
near crossover, the open-loop (OL) response is that of an
integrator, which — having infinite gain margin and 90° phase
margin, is the easiest plant to control.

These lessons from the PLL are found in many control
applications. The need to have something that is robust and
can be debugged leads to simplified models (or beating
more complicated models into first or second-order via use
of “divide-and-conquer filtering). Once the model has been
reduced to such a low order the first loop closures are
done with simple controllers: lag (PI), lead (PD), lag-lead
(PID), and double lead. Higher order dynamics and narrow
band disturbance signals — if they are modeled at all — are
often filtered before they ever show up in the loop analysis.
Physical understanding and intuition are key because they
help us debug our system. This means that higher-order
discrete-time models are either relegated to modeling and
simulation, or only applied when the plant behavior is so
benign that the sensitivity of the response to any one physical
parameter is minimal. A positive consequence of controlling
the simple plant model with a simple controller is that much
can be understood about the fundamental behavior of the
loop. A negative consequence is that it is often hard to
migrate the simple models and designs to more complicated
ones in an understandable way.

IIT. WHY WE DON’T TALK: HISTORICAL MUSINGS

A look through the examples in a classic mechatronic
control book such as [1] reveals quite a few dynamic models,
many for various types of electric motors. While there are
many versions of these, their simplified models are of the
types shown in (3) and (4).
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Similarly, the dynamics of voice coil motors as well as that of
the motion of a rigid body spacecraft maneuvering in space
(along any translational or rotational axis) can be described
by the double integrator model of (5):

P(s) == (5)
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These electromechanical models share something in com-
mon with the PLL plant model of (1) — they all contain an
integrator in the forward path. The fact that the plant contains
an integrator means that in most cases, we do not need to
add it into the controller to achieve zero steady-state error
to a step input. Without the need for an integrator, one need
not worry about integrator windup and so there is no need to
add integrator anti-windup to the controller. Without the need
for integrator anti-windup there is less need to separate out
the (non-existent) integrator in the controller. This frees us
to consider controllers in polynomial forms (as multiplied-
out filters or in state space). This means that low-order and
higher order plants can be controlled with the same filter
structure, simply by adding more taps. This is the form that
has been so common in the electromechanical (mechatronic)
world.

Another archetypal second-order mechatronic plant that
should not be ignored is the classical spring-mass-damper
model in which the primary mass of the system is attached
to a fixed surface via spring and mass. This has the charac-
teristic function of
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P(s) (6)
where wy is the undamped natural frequency of the denomi-
nator, (4 is the damping factor, and we have chosen a system
with no zeros.

At the same time, the types of loops associated with
process control systems, flow, pressure, level, temperature
[11, [5], [24] are most often characterized with a first order
or first order plus time delay (FOPTD) (sometimes referred
to as first order plus dead time (FOPDT)) model [30].
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and 7 is the time constant of the system. Sometimes a
secondary lag is included which makes the process a second-
order process, often called a second order plus time delay
(SOPTD) or second order plus dead time (SOPD) but what
is notable is the absence of an integrator in the plant model.
While it is readily understood that these models are not the
actual process [30], they are often considered sufficient for
control tasks. These control models are low order and usually
well damped (8).
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Fig. 5. Discrete-time control of a continuous plant.

IV. CONSEQUENCES OF AN INTEGRATOR OR LACK
THEREOF IN THE PLANT MODEL

It is well known in the control community that the desire
for having an integrator in the forward path of the control
loop stems from the Final Value Theorem, which says that
if E(s) has no right-half plane poles or zeros then

tgnoo e(t) = shl>n0 sE(s). )

Considering Figure 5, with a step input at the reference, 7,
R(s) =1/s.
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An integrator is required in the plant, P or the controller C' to
guarantee that the steady state error is 0 [2]. While the PLL
example of Section II demonstrates the need for a second
integrator to track an input ramp with zero steady-state error,
tracking an input step would be more basic, and something
we would want every loop to be able to do. Assuming either
the P or C' contains an integrator,f’(s)é (s) has at least one

integrator factored out, so that P(0) and C'(0) are finite.
lim e(t) = lim S E—
t—>00 s—0 s + P(s)C(s)

If P already contains an integrator, it is not needed in C
for the closed-loop system to track an input step. With no
integrator in P, it must be added to C.

=0. (12)
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Fig. 6. A simple discrete-time loop.

The place where this argument runs into trouble is with
disturbance rejection. The caveat is that different areas model
the disturbances as entering at different points in the loop. We
can see the significance of this by looking at any of Figures
4-6. Considering the continuous-time example of Figure 4
for simplicity, we see that
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For steps in the reference input, or the output disturbance, d,,
the previous result holds. However, step disturbances at d,,
present a different problem. If we factor out all the integrators
in the plant, so that P(s) = P(s)/s" where k is the number

of integrators in P(s), then
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So, no matter how many integrators are in the plant, the
controller needs an integrator to reject step disturbances at
d,. Modeling disturbances as unknown steps at the plant
input is a common trait of process control problems. On
the other hand, if one already has two integrators in their
plant, they might be more inclined to model disturbances
at the plant output or reference input, which would remove
the need to have a third integrator in the forward open-loop
transfer function.
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Fig. 7. Continuous-time PID with back calculation anti-windup.

Adding an integrator to a controller that may saturate
brings with it the possibility of integrator windup. To avoid
this anti-windup methods have become standard practice.
These seem to show up very specifically in PID controllers
(Figure 7) where the integrator can be treated as a separate
element from the rest of the controller. If there is no
controller integrator, then there is no need for integrator anti-
windup, and we are free to implement our controllers in a
more filter centric form. That is, our controller can now take
the form of a linear filter, whether it is in a continuous-time,
sample-data, or discrete-time formulation (Figures 4, 5, and
6, respectively), e.g.

. boz" + blz"*l +...b,
2 a2 4 ay,

The point is that once we no longer need to separate
the integrator for anti-windup, the linear filter structure

C(2) (16)



of the controller is essentially the same for a tenth-order
controller as it is for a second-order controller. We spend
a lot of time with algebra and linear algebra, searching for
roots/eigenvalues of the characteristic equation. We may push
them into forms for which we can easily adjust the roots of
thees polynomials, but — especially in the digital domain —
much of the physical relevance is lost. Still, there are many
problems for which only knowing the general properties of
the model is sufficient. When the dominant low-order model
for control systems is (7), then the incessant need for an
integrator in the controller, C', will emphasize anti-windup
methods. Furthermore, without higher frequency dynamics,
a second-order controller such as a PI or PID should be
enough.

V. REGIONS OF CONTROL
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Fig. 8. The typical ranges in a mechatronic system and how they relate

to proportional-integral-derivative (PID) control. If we close the loop well
below the resonance, we can use PI control. If we close the loop Well above
the resonance, we must engage the derivative term to get phase lead. Hence,
PD control works, although the integrator is often included for steady state
tracking (PID). It is only when we close the loop close to the resonance
that we need a very precise model.

Figure 8 shows the ranges of classical spring-mass-damper
second-order system, as described in (6). However, if we
move out beyond the resonance (or if the resonance is at such
a low frequency as to not be in the region of measurement),
then we are dominated by the double integrator model of (5).
If the loop is closed well below the resonance, a PI controller
may be used. If the loop is closed far above the resonance,
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time-delay (FOPTD) base model — and how they relate to proportional-
integral-derivative (PID) control. The first-order portion of the plant can be
addressed via a PI controller. It is the presence of time delay that brings
the derivative term into play, as an attempt to mitigate some of the negative
phase incurred by that delay.

a PD controller may be employed. (Even then, we may opt
to add integral action to improve the steady-state error.) It is
when we try to close the loop in the vicinity of the resonance
that we need to carefully use all the PID coefficients. Thus,
we need a far more accurate model than the previous two
cases. Even a double integrator can be seen as an idealization
of the case when the resonant frequency, wy, is well below
the lowest measurement/plot frequency.

Using such a diagram can provide intuition about the
choices of relative PID gains. The plots of Figure 8 and
the second-order model of (6) describe simple problems
for many engineers working with mechatronic systems.
Simply understanding the regions and which portion of
the PID applies gives some valuable intuition. Engineers
working with “squishy” dynamics (for example, chemical
process control (CPC), bioprocess control (BPC), thermal,
and pressure problems) see a see a wholly different pervasive
simple model, the first-order-plus-time-delay (FOPTD) [also
called first- order-plus-dead-time (FOPDT)] system, with a
characteristic transfer function of (7). While the form of
the transfer function is not dramatically different from a
mechatronic model, the time constants are typically 2-6



orders of magnitude slower than those of electromechanical
systems and the time delay in the system, A, can become
the dominant factor, as demonstrated in Figure 9.

If the dominant model of the system is a first-order, low-
pass with effectively no time delay, a PID controller [even
just the proportional plus integral (PI) portion] will safely
control it. Variations in the magnitude of the model have
little real effect on stability. With well-modeled parameters,
an ideal design uses a PI controller that makes the open-loop
response an integrator, as will be discussed in Section XI.
This corresponds to the design arrived at via internal model
control (IMC) [25], [31]. Mismodeling the pole location
affects the phase margin but does not destabilize it. The
open-loop phase may get close to —180° if the integrator
gain is too high, but it will never touch it. Consequently,
conservative designers tend to keep the integrator gain low so
that the integral portion is no longer in effect well before the
plant pole location. Again, we feel that such basic diagrams
can provide valuable insights for the practicing engineer.

A side note here — so obvious in retrospect that it often gets
ignored — is that since the time constants for such systems
are typically so slow (on the orders of seconds or minutes),
any modern embedded processing system will sample fast
enough so that even the conservative nature of the backward
rectangular rule discretization so common in PID designs
has little effect on performance. Making such simple insights
available to practicing engineers working on such problems
should be a boon to their work that makes a strong case for
applying a bit more theory to everyday problems [32].

For these FOPTD models, a key limit is the time delay,
specifically the negative phase associated with the transport
delay in the process that limits what any causal controller
— including a PID - can do. The phase plots in Figure
9 illustrate how limiting delay can be to open-loop phase
margin and therefore to achievable closed-loop performance.
IMC uses a Padé approximation of the delay [33], [25] and
compensates for some of it by forging a bit of lead from the
previously dormant derivative term. This has limits due to the
nonminimum-phase (NMP) zeros of most Padé approximants
[34] and the fact that the approximation accuracy gets worse
for longer delays.

One more caveat that we can share about the differences
in these three simple-yet-iconic system types lies in which
measurements are practical for system identification. In a
mechatronic problem, it is usually reasonable to isolate and
stimulate these systems without harm and so frequency
response functions (FRFs) (also called empirical transfer
function estimates — ETFEs — in the academic literature [35])
are extremely helpful, especially for higher-order, lightly
damped dynamics. They are almost unheard of in CPC prob-
lems, where the idea of injecting chemical stimulus across a
variety of frequencies makes no sense and could only result
in a process reactor full of useless waste product. Even for
such problems as temperature and pressure regulation, the
incredibly slow time constants and lack of lightly damped
dynamics dictate a choice between extracting data from
operational data and/or step responses.

Tied to this are discussions of loop shaping, which are
most easily visualized with Bode plots, such as those in
Figures 8 — 9. With FRF measurements, one can visualize the
effects of controller design on the measured plant response,
but as we avoid those measurements with the CPC problems
and their relatives, loop-shaping concepts become a bit more
strained. The important exception may be if one wants to
use IMC to derive the parameters of a PID controller for the
FOPTD problem. In the absence of time delay, with a perfect
model of the plant, and doing the analysis in continuous
time, IMC gives parameters for a PI controller that result
in an open-loop response that is that of an integrator [25].
This is exactly a loop-shaping result, but the result is more
analytic than based on a direct measurement (Section XI-B).
Consequently, the quality of the loop shaping once again
depends upon the quality of the plant model.

VI. SPECIFYING PID PARAMETERS

Another area of difference between the mechatronic and
process worlds is in how the PID parameters are specified. In
the mechatronic control world, it is hard to find a common
specification for the parameters, but four basic versions of
analog PID control equations show up in the mechatronic
control literature and in commercial PID controllers [36],
[37]. In the time domain representation those forms are:
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where e(t) error input to the controller, u(¢) is the controller
output, and
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For ease of explanation, we will keep to the frequency
domain forms. In 24 and 25 we have chosen the derivative
filter gain so that — in combination with the derivative — it
has a high frequency gain of 1. We could also have chosen
to a filter with DC gain of 1. The four forms are chosen by
picking two options:

« explicit time specification and



o differentiator filtering.

Explicit time specification simply refers to whether the 77
and Tp terms are present, or whether they are absorbed into
K7 and K p, respectively. It is perfectly legitimate to have

Ky
=7
where K;; and Kp; can be considered “implicit time”
versions of the integral and differential gains. Alternately,
the designer can easily go from explicit to implicit time
simply by setting 7' = 17 = 1. However, leaving the 77 and
Tp terms in the equation give the designer some flexibility
and also allow these terms to drop out when the discrete-
time PID is generated. In particular, for the backward rule
equivalent of an ideal PID controller with the sample period,
T = T = Tp, the time terms drop out of the equation,
making it appear much simpler.

The second option is differentiator filtering. We know
that any practical analog differentiator will eventually roll
off. It should make sense to explicitly include this in the
controller design, but this is not common. Perhaps designers
are expecting the plant dynamics and/or circuits to provide
low pass behavior. Still, one might wonder why use of a
low-pass derivative filter is not a standard practice. This
author’s best guess is that the most common implementation
of a PID controller is a backward rule discrete equivalent
approximation. This equivalent puts in its own low pass
filter on the differentiator. The typical over-conservatism
of the backwards rule equivalent saves the casual designer
the trouble and will tend to behave well, especially at low
frequencies.

Understanding these four basic forms are useful to a user
that has purchased a system that includes a PID controller
e.g. the controller of a motion control system. Invariably,
the user trying to model these systems will find that one
of these forms has been used without it being documented
in the product literature. Likewise, technical papers on PID
controllers will often default to one of these forms without
any discussion about the particular choice. Because of this,
it is pretty common to see PID gain ranges that vary all over
the place, even for the same basic controller.

In the process control world, there is a standard form for
PID controllers.

u(t)

Ky, and Kp;=KpTp, (26)

K <e(t) + 1 /0 Cedr + Tue(t)) @

TI

C(s) = K <1 + % + 7'Ds> . (28)

I
The parameterization of (27) — time domain — and (28) —
transfer function — is often referred to as the ISA (for Inter-
national Society of Automation) form [38], and commonly
presented in the time-domain equivalent. It is typically — but
not always — associated with process control applications,
temperature, and pressure control [17], [19], [20]. There is
an overall controller gain, but the relative gains of the three
parts are adjusted via the terms 77 and 7p, which nominally
are meant to refer to the integration time (time over which

the integral takes place) and differentiation time (time over
which the derivative takes place), respectively. Even here, the
terminology is confusing, since as written, the integral and
differentiator take place over all time. These terms take the
place of the integrator and differentiator gains. One would
naturally assume that integration and differentiation times (or
time constants) would be characteristics of the device or a
measurement parameter, rather than a control gain.

It is fairly easy to go from (22) or (23) to the ISA form

of (28 by setting Klﬁg“, = L and Kf(’iITD = —- in the former
or by setting 522 = L and £22 — L in the latter.

While the ISA parameterization has the advantage that it is
standard in the process control world, there are two annoying
features. The first is that in place of integral and derivative
term gains, it uses integration and differentiation time param-
eters. This is counter-intuitive because one usually thinks of
these as device properties, not tunable gains. The second is
that there are some very nice properties of the explicit time,
no derivative filtering form under discretization. These will
be discussed in Section VII.

VII. DISCRETIZATION DIFFERENCES AND ISSUES

C(s) C(2)

Fig. 10.  Structurally similar analog and digital proportional-integral-
derivative (PID) controllers. A parallel form topology of a simple analog
PID controller (left). When the structure on the left is discretized using
the backwards rectangular rule and the sample period (7s) matches the
integration time (77) and the differentiation time (7p), the digital PID
controller (right) shows much of the same structure.

Another major area of difference between mechatronic
and process treatments of PID control is in discussions of
discretization. Part of this difference is that the time constants
in most process systems are so slow — relative to any modern
real-time compute engine — that “sampling fast”, i.e. 100-
1000 or more times the fastest time constant in the plant is
relatively straightforward. In such an environment, when the
the control action is a frequency decade or more below the
Nyquist frequency, the concerns of the effects of discretizing
the controller are often secondary to other concerns. On the
other hand, mechatronic systems feature much smaller time
constants (usually several orders of magnitude), which means
that the Nyquist frequency and the plant dynamic frequencies
are much closer to each other. Consequently, mechatronic
control engineers worry about real-time computation a lot
more than process control engineers (or at least the former
should) [32].

Furthermore, while consequential time delay in simple
process system models are generally associated with the
process itself, the delays in mechatronic systems are often
recognized from the input, output, and computation chains



[32]. As we add more dynamics into our system model,
we are more likely to use a controller in the form of (16).
Even if we choose to structure the controller as diagrammed
in Figure 1, we are most likely to recognize that we must
implement those filters digitally. One other detail about this
structure is that the PID block is a placeholder for PID-
ish controllers: PID, PI, PD, lag-lead, lead-lag, double lead,
PIDA, etc.

Furthermore, while many digital control designs might be
implemented by doing direct digital design on a discretized
model of the plant [39], [40], the design of PID controllers
are almost universally done in the continuous-time domain,
and then the discretization is done after the fact. By far the
most common discretization method for PID controllers is
the backwards rectangular rule,

1—z71 z—1
s — = 2
s TS TSZ ( 9)
[18], [19], [20]. The trapezoidal rule
2 [1—2z"1 2 (z—1
s — | — ] = — 30
T T <1+z—1> Ts <2—|—1> (30)

is sometimes discussed, [20], although this requires that the
derivative term include the derivative filtering of (20) and
(25) or the PID controller will have an oscillatory pole at z =
—1 [37]. Readers should appreciate the uniqueness of using
the backwards rule here as it does not show up anywhere
in Matlab except for the PID toolbox. It is not an option
in the c2d() function that is so commonly used by control
engineers. The use of the backwards rule effectively chooses
a low pass filter for the designer (one with pole at z = 0).
Recalling that the backwards rule is not used on anything
but the PID, the filter design and discretization are almost
always done separately, which gives the structure of Figure 1.
Again, those extra filters are typically not in process control
systems and hence the need to consider discretization is also
postponed in most texts.

A simple, but very useful observation is that if one uses
the parameterization of (22) and sets 77 = I p = Ts then the
backwards rectangular rule discrete equivalent means that:

K
C(s) = Kp+—L+KpTps—> (31)
T]S
K
Clz) = Kp+i— 5 +EKp(l-2"") (32
1
= Kp+K—— +Kp- (33)
z—1 z

Note that the discrete differentiator of (33) has a pole at
z = 0. This simple choice means that the discrete-equivalent
PID is intuitively very close to the continuous-time PID,
especially if the sample period, Ts, is 1 second. Unless there
is a specific reason to change it, most of the examples in the
rest of this paper will use the explicit-time, no-filtering PID
structure of (22) or its digital equivalent of (33)

VIII. ANTI-WINDUP

How much we think about discretization also affects
how we implement anti-windup schemes. This section will

C(2) ek
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Fig. 11.  Discrete-time PID with back calculation anti-windup.
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Fig. 12.  Discrete-time PID with integrator clamping anti-windup.

discuss that area, although a deeper dive will be presented
n [41]. Since most of the PID centric literature is from the
process world, and the treatment there is almost entirely a
continuous-time one, it is logical that the most commonly
discussed form of anti-windup would be the back calculation
scheme diagrammed in Figure 7 [42], [43], [44], [45], [46].
Back calculation acts to zero out the input to the integrator
once the PID is saturated by feeding back the difference
between the saturated and unsaturated controller outputs to
the input of the integrator. However, since the controller
signal has three components, matching the exact amount that
goes to the integrator is a matter of tuning a feedback gain,
Kaw. A key advantage of this scheme is that it can be
implemented in continuous time or discrete time, as shown
in Figure 11. Note that since we cannot instantaneously feed
back the cancellation term, we require a time delay on the
path of Ky . Back calculation shows up in a lot of the
PID literature, although many examples seem limited to PI
controllers.

However, if the goal is simply to zero out the input to
the integrator while the controller is saturated, embracing
a fully digital method, such as the integrator clamping —
also called conditional integration — shown in Figure 12
accomplishes that [42], [43], [45]. The key is the use of
conditional logic, which is far simpler to implement in digital
logic. Integrator clamping zeros the input to the integrator
when the controller is saturated, clamping the integrator at
its previous level. Because it is in a computer, one can apply
extra intelligence to bleed off the integrator value when the
sign of the error signal is the opposite of the sign of the
contents of the integrator. Essentially, conditional integration
does what back propagation promises to do, but without the
worry of selecting K 4y .

IX. DERIVATIVE FILTERING

Another area that seems pushed to the background is that
of derivative filtering. The premise is that we cannot have a
pure differentiator in an actual system, and so at some point



some sort of low-pass mechanism must be employed. There
seem to be five basic methods for this:

The Analog Ignore It: The basis for this method is
that the analog circuitry for the controller, or the interface
circuits, or the plant itself are necessarily low pass and so the
need for derivative filtering will be handled somewhere else
without need for the designer to be overly concerned. (This is
analogous to all of those filter circuits that the PLL designers
fail to mention.) While this is feasible, it leaves the choice
of the filter up to someone other than the control designer.
Often that works, but it does remove a design option from
the control engineer.

Anti-Alias Filters with Cutoff at f Ny = 1000
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A
5
T
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2
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Fig. 13. Frequency responses of various anti-alias filters. All filters have a
DC gain of 1, with the passband ending at the Nyquist Frequency (fn, =
fs/2 = 1kHz here). Under an assumption that the sample frequency is 10
or 20x the open loop crossover frequency, we can examine the filter phase
response, which can significantly degrade the phase margin of the system,
as documented in Table I. The frequency axis is normalized by the Nyquist
frequency.

Analog The Whole Enchilada: In this form, we wrap
a low-pass filter around the entire controller, e.g. if we are
using (22) then

K I a "
C(é) = (Kp + R +KDTD,5> <S+G> .
This does provide the needed filtering on the D-term and
has the simplicity that it does not change the zeros of the
PID controller. However, the PI portion of the PID was not
the problem area and likely did not need the filtering. One
can argue that since the PI action happens at low frequency
and the low pass happens at higher frequencies, that these
do not interfere with each other. However, the anti-alias filter
example used in [47] shows that the phase effects of even
simple low-pass filters can be severe, as seen in Figure 13
and Table I. All this is to provide an example that when the
cutoff frequency of a low pass filter is close to the dynamic
frequencies of the control system, the former can cost a
substantial phase penalty.
Analog Just the D: This is the method applied in (24).
It has the advantage that it limits the gain of D term at high

(34)

Attenuation
Filter Phase at fn, /10 | Phase at fx, /5 at 10fny

4™ Order

Butterworth —15.0276° —30.1223° —80.1201 dB
4™ Order

Elliptical —10.5523° —22.8086° —40.8932 dB
27 Order

Butterworth —8.1486° —16.4211° —40.0605 dB

TABLE 1

PHASE PENALTY OF REPRESENTATIVE ANTI-ALIAS FILTERS. THE
CORNER FREQUENCY IS CHOSEN TO BE AT THE NYQUIST FREQUENCY,
HALF THE SAMPLE FREQUENCY, fny = fg/2. COMPARISONS ARE
MADE WITH RESPECT TO THE NYQUIST FREQUENCY AT IT IS
CONSIDERED THE LIMIT OF INTENTIONAL DIGITAL CONTROL ACTION.
THE TWO BUTTERWORTH FILTERS ARE FLAT IN THE PASSBAND, BUT
INCUR A LARGER PHASE PENALTY RELATIVE TO THE ELLIPTICAL
FILTER FOR STOPBAND GAIN ATTENUATION THEY PROVIDE. ON THE
OTHER HAND, THE ELLIPTICAL FILTER HAS UP TO 3 DB MAGNITUDE
DISTORTION IN THE PASSBAND. ALL OF WHICH IS TO SAY THAT THE
CHOICE OF ANTI-ALIAS FILTER STRUCTURE SHOULD NOT BE SEPARATED
FROM THE AVAILABLE SAMPLE RATE OPTIONS, NOR THE ROBUSTNESS
OF THE SYSTEM TO GAIN AND PHASE DISTORTIONS.

frequency while not affecting the PI region of the controller.
However, it does change the overall algebra of the controller
equations, complicating analysis [48].

Digital Ignore It: This one stems from using the back-
wards rectangular rule for computing the discrete equivalent,
which conveniently puts a low pass filter on the digital D-
term at z = 0.

However, the most popular form of limiting the noise from
the D-term is Set Kp = 0. That is, while we talk about PID
controllers, any informal survey of control engineers using
PID controllers reveals that the vast majority of these designs
have zeroed out the D term and are really PI controllers.

X. DIFFERENCES IN MEASUREMENTS AND MODELING
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Fig. 14. Idealized responses of first (left) and second (right) order models.

The differences in dominant low order models also affect
how these models are identified. We will stay with our
assertion that the dominant models in the process control
worlds are the first-order-plus-time-delay (FOPTD) with the
occasional second-order-plus-time-delay (SOPTD) model.
Key to each of these is that they are open-loop stable and do
not contain any integrators [21]. Furthermore, the SOPTD
model has real poles, rather than taking the form of an
underdamped resonance. These simple models typically lack
any zeros in the response, which makes them amenable to



identification via step response methods — often referred
to as process reaction curves in the process control world
[20], diagrammed in Figure 14. If the system is dominated
by one of the poles, then relay tuning or Ziegler-Nichols
Tuning (or some similar method) may be used [20] Because
these models are first or second order, even discrete-time,
time-domain methods can retain some physical intuition;
something that is much harder for higher order models.

“ Ssecond Integrator
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First Integrator
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Time  ——

Fig. 15.  Idealized step response of single and double integrator.
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Fig. 16. Time domain, discrete-time model, system identification diagram.
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Fig. 17. Simple ARMA plant regression model.

When the dominant low-order model contains an integrator
then a step response does little good. For example with
the ubiquitous double integrator the first integrator turns the
input into a ramp and the second into a quadratic (Figure
15). Since the plant is not open-loop stable, there is no settle
time and we cannot extract the gains simply from a ratio of
steady state output to steady state input. Closing the loop to
produce a step response of a stable system requires at least
some lead, and so some nominal PD controller must be used
(assuming there are not higher order dynamics of concern).
We can put in a square wave function and try to discern the
gain constant from there.

Neither of these provide a strategy for dealing with other
dynamics in the model. Since step response methods are not
overly useful, these plants suggest input signals without DC
content: either random (pseudo-random) or oscillatory input
signals. We also start considering more more generalized
structures for the plant model. Putting these together we get
to the time-domain regressions on discrete-time parametric
models, as diagrammed in Figure 16, or frequency-domain,
non-parametric methods [35], [49]. The former suffer from
a lack of of connection between the discrete-time model

coefficients and the physical parameters. The diagram il-
lustrates how components of the input-output response of
the plant, the sensors, actuators, ADCs, and DACs, all get
subsumed into the digital model. While this works for some
systems, the loss of physical intuition often makes it much
more difficult to debug a real system. The non-parametric,
frequency domain methods suffer from the need to extract
model parameters from the frequency response function
(FRF) [50], [51], [52].

In any event, we can readily see that the switch between
the stable FOPTD and SOPTD models prevalent in the
process control world and the marginally stable models
so prevalent in the mechatronic world not only change
which measurement methods are used, but also affect the
physicality of the extracted model parameters from those
measurements.

There is more evidence for this in examining the operation
of i-pIDtune, which is an interactive tool for system identi-
fication and PID control design [53]. While this is more of
a teaching tool than an industrial application system (as it
does not generate test vectors for export to physical devices
nor import the measured responses resulting from those test
vectors), it provides an interesting view of what some of the
leading researchers in the use of PID controllers in process
control consider important. The models considered for PID
tuning are either first or second-order plants without inte-
grators, although with the possibility of non-minimum phase
(NMP) zeros. The recent update to the tool, i-pIDtune 2.0
[54] expands the set of plants to include second-order plants
with integrators. In both versions of the tools, zero mean
signals are used as a stimulus (either Pseudo-Random Binary
Signals — PBRS or multi-sines) is different from the normal
step-response methods. This frees the identification step
from needing to specify a model structure in advance. The
authors use an AutoRegressive with eXternal input(ARX)
model structure to match a general discrete-time transfer
function model and then do model reduction to extract the
parameters for one of their supported models. There is an
option in Version 2.0 to remove known integrators from the
simulation a priori. However, even this advanced teaching
tool illustrates that the presence or absence of an integrator
in the plant structure changes how we try to identify it.
Thinking about how this might apply in practice, we could
easily see how mechatronic and process control engineers
would have a vastly different view of plant identification,
based upon their experience in dealing with plants with and
without integrators.

Another difference between mechatronic and process con-
trol system identification is the relative importance of time
delay. For many mechatronic systems, the amount of delay
relative to the time constants of the system are small enough
that issues of high frequency dynamics (e.g. resonances
and anti-resonances) dominate. The time delay may not be
included in the model if small enough.

On the other hand, when the dominant models for a set
of problem always have “plus time delay” in their names, it
seems that we are less likely to ignore those. This creates



an issue for typical time-domain identification with linear,
discrete-time models because one often represents the delay
with a Padé approximant [33]. The most accurate of these
have at least one non-minimum phase (NMP) zero. Adding
this to the identification model begs the question as to
whether it should just be considered another order of the
model or whether the effects of delay on the data can be
separated out (as we can in the frequency domain).

XI. DIFFERENT VIEWS OF LOOP SHAPING

An oft-quoted story about Mahatma Gandhi is that when
a journalist asked, “What do you think of Western civiliza-
tion?” he responded with, “I think it would be a good idea.”
Similarly, loop shaping is often considered a good idea for
control design, but how it is viewed with respect to the use
of PID controllers is again different in the mechatronic and
process control worlds. More examples from this discussion
can be found in [55].

In the mechatronic control world, loop shaping is often
described and evaluated in terms of the frequency domain.
It is possible to work directly from frequency response
function (FRF) measurements of the plant, adjusting con-
troller components until the measured (or projected) open-
loop response looks favorable. A common theme proposed
by this author [56], [57] and others [58], [59], [60] is to shape
the open-loop response towards that of an integrator. This
can be done in a variety of ways, but results in a response
that can be easily evaluated and optimized for its closed-
loop properties. Following this philosophy, a combination
of PID-like simple controllers and filters can be added and
adjusted until the open-loop frequency response looks like an
integrator. The key limitation here is time delay which can be
mitigated some by lead filters, but eventually eliminates the
phase margin (PM) and limits the open-loop gain crossover
frequency.

From an industry perspective, or the perspective of some-
one trying to transfer a methodology into an industrial envi-
ronment, making the open loop an integrator is “explainable”
loop shaping.

o There is no need to convert to state space or use H..,

(but we could).

o It is so intuitive that it can be done without using to

optimization package (but we could).

e It can be understood in continuous or discrete time.

o It can be accomplished algebraically and/or graphically.

o The FRFs provide an easy-to-understand visualization.

o It enables simple computations for evaluating against

open and closed-loop constraints.

All of this means that using this tuning philosophy makes it
relatively easy transfer to industry without much pushback.
After all, we’re not taking away their PID; we’re showing
them how to tune it up. A side benefit is that success in
transferring improvements to industry PIDs in this manner
opens the door to other things we might want to add to an
industry control system.

Notably, for portions of the plant response that can be
modeled with stable, minimum phase, proper filters, an

inverse filter corrects the response. It is not practical to
directly invert pure integrators, since pure differentiators
are rarely practical, whether in continuous or discrete time.
Instead, we are often left with compensating the integrator(s)
with lead elements. These have a built-in corner frequency
for the zero and so the amount of lead compensation is
limited.

A. Loop Shaping in the Frequency Domain

Frequency domain measurements are often favored over
time-domain measurements for lightly damped mechatronic
systems because they can often clearly resolve the key dy-
namics from those that are below the noise floor and establish
what is feasible. However, frequency domain identification
results in FRFs, a set of ordered pairs of frequencies and
complex response, which do not immediately fit into an
analytic transfer function or state-space model.

Frequency domain loop shaping is very visual, most
commonly working from Bode plots. The advantage of
this in systems that are well suited to frequency domain
measurements, is that the design can be done working
directly from the measurements, without having to reduce
the measurement to an analytic model. In the days before
widespread use of powerful digital computing tools, this was
a very practical way of designing controllers, particularly for
single-input, single-output (SISO) systems. Three examples
are particularly illustrative here, in part because we can
compare them to doing the same design using Internal Model
Control (IMC) in Section XI-B. These are:

o Loop shaping for a first-order, plus time delay (FOPTD)
model provides two examples. We will look at the PID
controller we need for a first order without time delay
and then see how that changes when we have time delay.

o Loop shaping on double integrator. This model is far
more common in the mechatronics world, and on the
simpler side of what is typically done in the frequency
domain, but it is still illustrative of how we configure a
PID for such systems.

1) First Order Plus Time Delay (FOPTD): The model for

a FOPTD plant was given in (7). For A = 0, this reduces to
a simple first order model,
K

K J— T
Ts+1 s+ 1

Ka
s+a

P(s) = (35)
If we take the objective of our controller as making the open-

loop response resemble that of an integrator, then we expect
Ko(s+a) Kca Kra
s s Kps )~
(36)

Here, we are using the implicit time form from (25) just to
simplify the text. This yields an open-loop response of:
KK
P(s)CO(s) = ——<2.

S

C(s) = = K¢ + Kp(1+

(37)

In the absence of time delay, a well matched PI controller
turns the no-delay curve of Figure 9 into a straight integrator
curve with a phase of —90°, resulting in infinite gain margin
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FOPTD Closed-Loop Responses from Different Controllers
T T

70 T T
__60 E
[as]
ke
@ 50 J
=}

2
S 40l E
[
=
30 I /
20 L L e
1072 107 10° 10t 102
Frequency (Hz)
s0F T T T -
CT PID from IMC /
CT PID from Freq.
5 — — —CTPI /,/
o) or e ————— _—
s AT T
-
% /’/f
2
& 0 -4_/—/ T
-100 1 1 1
1072 10t 10° 10t 102
Frequency (Hz)
Fig. 19. Bode plot for three continuous-time (CT) controllers. One is a

PID, designed as a PI plus a filtered PD, in series. The value for the low pass
filter, a2, was picked, and then the values for b, a1, and K were picked
from the IMC calculations in (79). The second is a PID designed from
adjusting the b, a1, and K parameters until the open-loop and closed-
loop responses looked reasonable. The third is a PI controller where the
PI zero matches the first order pole, and the gain is adjusted to match the
open-loop response of the other two.

and 90° phase margin. As mentioned earlier, it is the time
delay that eats away the phase margin, as seen in Figure
9. The only element of a PID that can restore any of the
phase is the D-term. We can plot the effect of e~ directly
in frequency responses since this results in a pure phase
component, but to work with any transfer function (or state-
space) we would want to approximate this, typically with a
Padé approximation. In most applications, a first order Padé
approximant [33] is used:
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Fig. 21.  Closed-loop responses for nominal plant from Figure 18 and the

three different controllers of Figure 19.

Although the first-order Padé (38) is commonly used as a
rational approximation of time delay in controller design, it
is worth noting that it is bounded below by —180°, while
the phase of e~2* decreases without bound towards —oo.
We should be cautious about using this when A is close to
the sample period or larger.

If we want to compensate for this, we need a lead circuit

O(s):KC(HG) (S+b>.
s s+ ay

As before, the first term serves to compensate for the plant
pole. The second factor is a phase lead if 0 < b < ay. If
we want to extract our PID parameters from this, we can
compare it to one of our earlier formulations. For simplicity
we will choose the implicit time with derivative filtering form
of (25). If we put that form over a common denominator, we

(39)
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Fig. 22. Closed-loop responses for plants of Figure 18 and IMC designed
PID controller of controller of Figure 19. The variation in responses is due
to the variation in the plant responses from Figure 18.

have:
Kps(s+a1)+ Kri(s+a1) + Kp ;s>
Cls) = = et a) s(gl(al) uote . (40)
 (Kp+ Kp,;)s® + (Kpay + Ky ;)s + Kz,i%l)
N s(s+a1) N
Kcs2+Kc a+b)s+ Kcab
C(s) = s(s(—i—a1§ . (42)

We can extract our PID coefficients from equating the
numerator terms of (41) and (42). We note that in (42),
the only free parameters are b, a;, and K. The first two
determine when the lead action starts and ends. The last one
is the overall gain of the system which is usually set from
open-loop gain and phase margin considerations. Matching
the numerator terms of (41) and (42), we get

Ke = Kp+Kp,, (43)
Kcab = Kj;ar, and (44)
Kc(a+b) = Kpay+ Kp;. (45)
Finally, from these, we get the PID gains:
K b
Kp = =¢ {(a—i—b) - a} : (46)
al a1
b
Kii = Ko and (47)
ay
Kp; = K¢—Kp. (48)

The FOPTD plant responses for five slightly varying plants
are plotted in Figure 18. PI and PID controllers are plotted
in Figure 19, where one set of PID parameters was generated
from the IMC loop shaping of (79), while another was
tuned by visually adjusting the open-loop response. The
PI controller was adjusted to match most of it’s open-loop
response to the other two. The resulting open and closed-
loop responses are shown in Figures 20 and 21. Note that the

action of both PID designs in Figure 19 is to add the desired
phase lead to the controller not seen in the PI controller.
This extra lead gives more phase margin (Figure 20) allowing
increased closed-loop bandwidth with less peaking (Figure
21. Figure 22 shows variations in the closed-loop response
when the IMC designed PID is used on mismatched plant
models.

Double Integrator Responses
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Fig. 23.  Bode plot for double integrator plant, but with varying gains.
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Fig. 24. Bode plot for a continuous-time (CT) proportional plus derivative
(PD) controller. The value for the low pass filter, a1, was picked, and then
the values for b and K were picked from the IMC calculations in (93).

2) Double Integrator: If the FOPTD of (7) is the iconic
model for process control systems, then the double integrator
of (5) is the iconic model for mechatronic systems. If we
ignore for a moment, the possibility of step disturbances at
the plant input as discussed in Section IV, our instinct is that
this system does not need another integrator in the controller.
With the plant phase already at —180°, what it needs is some
phase lead to stabilize the system. The only way to get this
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Fig. 25. Open-loop responses for plants of Figure 23 and controller of
Figure 24.

Double Integrator + PD Closed-Loop Responses
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Fig. 26. Closed-loop responses for plants of Figure 23 and controller of
Figure 24.

with a PID is using the D-term:

s
s) = Kp+Kp. 4
c) = Kot Ko (5], “9)
(Kp+ Kpi) [,5 + 71(5{;?[) 7}
= —, (50)
s+ aq
Kc(8+b)
< = —=, 1
C(s) o (51)

This always produces a lead, since Kpii;}D < 1 for any
positive values of Kp and Kp ;. How much lead we have
is determined by the relative sizes of Kp and Kp ;. If one
accepted the simple model as truth, one might be tempted
to make b as small as possible and a; as large as possible,
but we know practically that the double integrator behavior
at low frequency helps minimize steady-state error to a step

or a ramp, and noise and unmodeled time delay often put a
limit on a;. From these, we get the PID gains:

Ke = Kp+Kp,; and (52)
Kpay

b = —m8m—.. 53

Kp+ Kp (>3)

From here we get the PD coefficients (there is no I-term):

b
Ko—
ay

Ko (1").
aj

The double integrator plant response, PD controller, open-
loop, and closed-loop responses are plotted in Figures 23—
26. The plant gain is set to 1 and the low pass filter corner,
al is set to 100. From there, the rest of the gains were
adjusted using the formulas from the IMC loop shaping
below, particularly (93). This results in the PD controller
of Figure 24. We can see the effect of the practical lead in
Figure 25, producing close to 60° of phase margin. The use
of parameters from IMC results in the magnitude crossing
0dB near the frequency of maximum phase margin and
produces very clean closed-loop responses with minimal
peaking (Figure 26).

and

Kp (54)

Kp; = (55)

B. Loop Shaping Using IMC
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Fig. 27. Internal Model Control (IMC)

A common diagram for Internal Model Control (IMC) [31]
is shown in Figure 27, although this one has been augmented
with more noise and disturbance inputs than are typical in
the standard process control centric diagrams. We can see
that the formulation uses a model, 15, of the plant, P, to
construct the controller. With a bit of foreshadowing, one
might note that this method will depend on how closely P
— which can be considered an observer — approximates P,
but for now we will go through the algebra.

dy
ry e u yy z
- — > Q > A - S )———
- +
P
A
P [€
Fig. 28. Internal Model Control (IMC) rewritten to isolate controller.



We can use loop manipulations to redraw Figure 27 to that
of Figure 28, ignoring for now most of the disturbance inputs.
We can now see that the controller, C'(s) is constructed with
the positive feedback loop:

Clo) - Q)

1= P(s)Q(s)
This is often recognized as the Youla-Kucera parameteriza-
tion [61], [62], although the latter typically assumes that P
and P are stable. For our purposes, this means that there are
no unstable poles or integrators in either, which right away
is a difference from models so typical in the mechatronic
world. One can wrap the unstable/marginally stable plant in a
stabilizing feedback loop, but that clouds the IMC discussion.
Our goal is to point out once again that IMC is most typically
applied to plants that are already stable and lack an integrator.

The a key feature of the Youla-Kucera parameterization is
that () is stable and proper. As it is used in IMC, @) will
also be used to invert the plant, P. If the plant is stable
and strictly proper, with a pole-zero excess of m, then IMC
usually adds in a low-pass filter (LPF) of the form:

1 m
" , 57
(s+;> o7

so that Q(s) = Q(s)F(s) is proper.
Pl — Q)

1— P(5)Q(s)
At this point in most IMC descriptions, there is a slight
of hand in which the model, P, is replaced by the plant, P.

In other words, there is an assumption of perfect modeling,
so that P(s) = P(s) and

(56)

1 —
(TFS+ ].)m N

F(s) =

(58)

_ P)QUs)
1= P(s)Q(s)
Now if P(s) = P(s) is invertible (i.e. no RHP zeros),

then pick

P(s)C(s) (59)

Q(s) = Q(s)F(s) = P~ (s)F(s) = P~ (s)F(s).  (60)
This gives:
Q(s)P(s) = P~} (s)P(s)F(s) = F(s) (61)
so that
oL - _PERWFG) _ _Fl) o

1- P(5)Q(s)F(s) 1-F(s)

If the pole-zero excess of P is one, as is the case for the
FOPTD plant so common in process control systems, then
m = 1 and

1

Py 1
OL(s) = —&h = — (63)
1 - Trs+1 TFS

In its most ideal form, and for the most common plant
model in the process control world, IMC turns the open loop
frequency response into an integrator. This ideal response
depends upon a close match between P(s) and P(s). That

is, the benefits of IMC truly depend on having a good model.
(It’s in the name, after all.)

In the particular case of the FOPTD model of (7) with
no time delay (A = 0), Q(s) would have a single zero to
cancel the plant pole. The controller, C'(s) ends up being a
PI controller:

P~(s)F(s)
C(s) = m, (64)
Koty _ 75+ 1
= Kloesdl) _ , (65)
P KTFS
T 1
C(s) = Krr <1 + KTFS>' (66)

This matches our previous loop shaping example using PID
on a FOPTD model with no delay, but is arrived at just
through algebra.

When we do have delay, then the D term of the PID
becomes important. For those in the mechatronic world, this
is logical as it is the only part of a PID that can give us
phase lead. However, the unpopularity of the use of the
frequency domain in the process control world means that
this bit of intuition must be arrived at differently. In this
case, the desire to use algebraic methods means that the time
delay gets represented by a Padé approximation of (38) [33].
Critical to this is the choice of the many approximations
to use, but for the classic FOPTD model it seems that a
first order approximant with a single stable pole and non-
minimum phase (NMP) zero. If we are using only a PID, then
the question becomes how to use the D term to compensate
for some of the excessive negative phase of the NMP zero.

1) First Order Plus Time Delay (FOPTD): To do repeat
the loop shaping of Section XI-A.1 using IMC, we apply the
Padé approximation [33] of (38) to (7), to yield

Ka (2 —s
P(s) = (% ) . 67)
sta\x+s
In this case, we compute:
. (s+a)(Z +5) a3
— = NA Y P(g) = ——2
Qo) = "0 FO = 9
which means:
2 2
a3A(s +a)(2 + 5)
Q(S) QK(S _|_ Cl2)2 ( )
and 25 (2 )
N o a2 A + S
Poae = (%) 20 a0
Finally,
agA(s+a)(%+s)
_ 2K
Cls) = 1 <agA) (R+s) 71
2 (s+az)?
_ _GeGraEts) )
- aZA ’
(s +a2)? — 5=(% +3)
azA 2
s) e (s +a)(x +s) (73)

S(otan 2+ 58))



Looking at (73), we recognize the PI control portion of
% that we had before. That handles the first order dynam-
ics. We also know from our frequency domain intuition that
the rest of the controller needs to be a lead circuit in order to
counteract the negative phase of the time delay. That means
that we need the zero from the % to happen before the pole
from the as(2 + £22) term.

Aa2 2
24 =2 = 74
as ( t= ) N (74)
4
do+ A > % (75)
4
Aa3 + 4ay — N > 0, (76)
a22 a9 4
A + 4Z ~ Az > 0,. a7

If we complete the square, we end up with:

(a2 + 3(J§+ 1)) <a2 - 3(\/i — 1)) >0. (78)
A A
Our free parameter here is as. Equation 78 will hold if as
is very positive or very negative. Since we want a causal
filter, we need ay > 0, which means our requirement is
az > % (V2 — 1) for our controller to have a lead. We can
interpret this as needing the low pass filter on the D-term to
be far enough out to leave room for some lead action.
With C(s) defined in (73), our open loop response be-
a%A

comes:
2 (% —s)

s(s+ax (2+ 552))
This is the best that the IMC design can do, and we know
from (73) that it has provided some phase lead. Comparing
this to the lag-lead controller of (39), we see that
Aay a3A

= 2+ — =,
ai a2< + 5 oK

We see that the IMC design has determined most of our
parameters, except for the final selection of as which de-
termines a,. From these values, we can use (46)— (48) to
calculate the PID gains.

2) Double Integrator: To do repeat the loop shaping of
Section XI-A.2 using IMC, we have:

P(s)C(s) = (79)

),b:i, and Ko = (80)

Os) =5, Fly= 2 81)
& - K’ © - (S + a2)2 I
which means: )
Qs)y=2_" (82)
K (s+ag)?’
and
P(5)Q(s) az (83)
‘ o (s +az)?’
Finally,
e @
C(s) = rraal) _ o 5, (84)
1 Grdp Cta)f-a
2
s 85
C pu—
(S) s+ 2as (85)

This controller is a lead, but with a pure derivative numerator.
If we want the PD controller from Section XI-A.2, we need
to pick a different F(s) filter. Using the same Q(s) from

(81), but
s5+b a3
F(s)= —= == that 86
(5) <S+a2>s<b)”° a (86)
s? (a3 s+b
=— |2 — 7
o =5 (%) s, )
and
. a3 s+b
P _ (2 _2T7
00 = () G 59)
Finally,
% (%) 6+
C(S) = a% s+b ’ (89)
1- (T) (s4az)3
2 (%) s+
= . L 0)
(s+a2)° — (%) (s +b)
2 (7) (s +b)
C(s) = 91
(5) s34+ 3ags? + a3 (3— %) s ©1)
To get the lead of Section XI-A.2, we need
a; > 0 and a; = 3b, 92)
which simplifies (91) to
2ad(s+ %)
O(s) = K2 ' 3/ 93
(s) s 1 30, (93)
To get to the form of (51), we match coefficients:
3 5
Kce = Kp+Kpy e 94)
b o= % (95)
aq = 3602, (96)
KP a
= — 97
Kp+ KDJ' “ 3’ ©7)
Kp a9
3 = = 98
Kp+ Kpy a2 3’ ©8)
Kp 1
T 99
Ke 9 99
Finally,
2 2
_ gy _ 8ay
Kp K and KD_yzng. (100)

Note that IMC gives a very specific set of relationships
in order to generate the needed, practical lead controller
this problem requires. Even though the double integrator is
not asymptotically stable, the Youla-Kucera parameterization
[61], [62] still yields good parameters.



C. Loop Shaping Summary

The examples of this section have tried to show how —
within reason — the graphical loop shaping in the frequency
domain favored by mechatronics oriented control engineers
and the algebraic loop shaping in the transform domain
favored by the process oriented control engineers, are largely
working towards the same control design. The IMC examples
above relied on the plant model, P(s), matching the true
plant, P(s), but the method robust to model inaccuracies is
one of the foci of IMC research not covered here. In the
case of the frequency domain methods, the robustness or
lack thereof is very visual, showing up in the Bode plots.
Still, what has been demonstrated is that we can draw a lot
of intuition from the frequency domain to apply to our IMC,
and we can draw a lot of parameter specifications from IMC
to test in the frequency domain.

XII. UNIFYING VIEWS OF PID CONTROLLERS

Perhaps no single control technology would be embraced
more universally by engineers and scientists both inside and
adjacent to our field than higher performance, more universal
PIDs. We make a few suggestions for how to get there:

o Embrace the digital. Don’t obscure the relationships
between CT and DT parameters.

— We know the controller will be digital; let’s let
practicing engineers know how we handle it.

o Standardize simple model extraction for PID parameters
from measurements.

— Build these methods directly into our real-time
controllers on parallel hardware.

— Connect measurements, CAD tools (modeling &
design), and implementation, so as to make itera-
tion far more painless. The mantra here should be:
“Connect, connect, connect.”

e A common parameterization mostly that makes sense
in both analog and digital helps. This paper has tried
to show the utility of the continuous-time, no derivative
filtering model of (22):

K
C(s)=Kp+ 7; + KpIps,

T
and sets 77 = Tp = T's then the backwards rectangular
rule discrete equivalent means that:

Ky 1
ﬁ“!‘KD(l_Z )

« Do not be cavalier about the filtering. Respect the phase
effects of noise and derivative filtering. That being said,
be open to using filters for loop shaping to help make
the open loop an integrator.

e The loop shaping discussion of Section Section XI
showed that loop showed that frequency domain and
IMC based loop shaping should not be viewed as op-
posites, but should be used complimentarily. The IMC
gives a great starting point for picking controller param-
eters, while the frequency domain plots provide instant
intuition about the margins (and therefore robustness)

of the resulting controller design. On the other hand,
it is the frequency domain that instantly informs us of
the “need for lead”, which guides how we construct our
IMC problem.

XIII. CLOSING: REMEMBER THE AUDIENCE

This paper has tried to bridge the gap between the mecha-
tronic and process control views of PID controllers. For those
of us who spend a lot of time doing control research, PID
may be viewed as:

o the main controller,

« a placeholder until we can insert our more sophisticated
controller,

o a fundamental part of our overall, sophisticated con-
troller,

o something for beginners, or

o all of the above.

However, for our colleagues in adjacent fields or for folks
with little control background, PID is feedback control. It
seems that we often miss opportunities to have the controls
community lead in the machine intelligence world, because
we do not spend enough effort reaching out to these people.
If we did, then those working in machine intelligence would
know that sometimes they need to call those folks who
care about how their algorithms interact with the physics
of dynamic systems.

PIDs are the “gateway drug” for these colleagues to
embrace more feedback principles. Speaking with more
commonality may reduce the number of published papers but
will greatly improve our interaction with the larger world.
Even if we in the the controls community have our own
dialects, we should be willing to provide a “Rosetta Stone”
of PIDs for those outside — but adjacent to — our field.
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