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Abstract— It is not uncommon for graduate students on the
mechatronics side of the control world to treat the Proportional
plus Integral plus Derivative (PID) controller with a certain
amount of disdain. This is not surprising since most control texts
from this end of the control world treat PIDs as simple, basic
structures, to be quickly replaced by more advanced methods.
To that end, these texts devote only a handful of pages to the
subject. It seems that – at least in the mechatronics world –
PIDs are considered too simple for much interest in academia
while practicing engineers do not seem to care why they were
working.

This is a far cry from the treatment of PIDs in the chemical
and bio-process control worlds (CPC and BPC, respectively).
At this end of the control spectrum, PID controllers are
studied in far more depth obtaining entire books or book
series. Despite this volumetric expansion of material, it seems
that in the latter worlds, many of the issues and concerns
one sees in the mechatronic world are treated as obscure
corner cases. Depending upon the teaching text, issues of
sampling and digital representation may have been completely
omitted. There were other surprises. While PIDs were almost
universal and standard, they were almost never unified or
standardized. Furthermore, what seemed to limit performance
was not the structure of the controller itself, but the lack
of accurate system/process models based on repeated physical
system measurements.

However, the mechatronic and process PID goals and foibles
were not that different once one considered the different system,
time constant, and measurement constraints. We will discuss
these issues with the goal of getting a more unified view of PIDs
across our application domains. We will provide a handful of
common PID forms and show how they are related, so that
we can approach any PID structure with the same analytical
approach. We will finally look forward to how PIDs can be used,
not only as a fundamental teaching tool for explaining control
outside of our research circles, but as a critical component for
advanced control methods.
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I. MOTIVATION: FRAMING THE PAPER

Proportional plus integral plus derivative (PID) control

is treated very differently in the mechatronic and process

control worlds. This can be seen in how the topic is discussed

in textbooks from the different areas. In the electrome-

chanical/mechatronic based control books PIDs are typically

relegated to a few pages or a small section in one chapter. We

refer the reader to the classic texts by Ogata [1] or Franklin,

Powell, and Emami-Naeni [2] as well a host of others [3], [4],

[5]. It is not even mentioned in [6] or [7]. By a later edition

of Ogata’s Modern Control Engineering [8], it gets a few

more pages but most of those are in the problem section of

the chapter. In the classic book by Kuo [9] there is a section

on PID control, and later on a discussion of discretization
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(using the backwards rectangular rule). Curiously, their first

example is of a process which includes an integrator, and so

they choose to only use PD control. In Kuo’s book on digital

control [10], there are again a few pages on digital PID

control. Here the author chooses to discretize the integrator

with a trapezoidal rule, but uses the backwards rectangular

rule for discretizing the derivative term. Perhaps the deepest

treatment (and signs of work to come) are in [11] where

the topic gets a full 20 pages, [12] with 18 pages, [13] and

[14] where it gets its own 18-page and 25-page chapters,

respectively. Two books on writing software for control,

specifically of mechanical systems [15], [16] spend only a

few pages on PID controllers, despite having a focus on

practical implementation of controllers.

On the other hand, the process control view often has en-

tire books [17] (or series) [18], [19], [20] on PID controllers.

Even when the book is not specifically about PID controllers,

but instead about process control, the texts feature multiple

chapters on discussions of PID control [21], [22], [23], [24],

[25], [26]. Furthermore, the descriptions and use of PID

methods permeate through these entire texts. A recent paper

by Hägglund and Guzmán went so far as to be entitled, Give

us PID controllers and we can control the world [27].
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Fig. 1. A mechatronic control loop with a PID and filter implemented
in discrete time. The PID handles the rigid body/baseband portion of the
plant response while the filter is in place to equalize the resonances and
anti-resonances of the physical system.

Looking into these texts, the discrepancy in the treat-

ment of PID controllers goes further. In the process control

texts, discretization is rarely discussed while it prominently

features in any mechatronic digital control book (if PID

controllers are discussed there at all). There are other fun-

damental discrepancies, such as how the PID parameters are

specified and how the plant is characterized. The net result

is that anyone trying to learn about PID control for the first

time goes down one of two divergent paths. We offer the

conjecture that as the field was emerging different dominant

models in mechatronic systems versus process systems af-

fected these views. Accepting that, can we return to common

principles and see which ones apply in any situation? If we

can, then we have a more common framework for discussing



PID control, both amongst ourselves and with scientists and

engineers working adjacently to the control field.

For this author – emerging with graduate school training

that barely referenced PID controllers – it seemed as if these

were relics of the simple past. System identification was to

be done with regression on discrete-time transfer function

parameters in some sort of ARMA, ARX, ARMAX, etc.

form. These would then be mapped to state-space canonical

forms where all the modern control tools could be brought to

bear. However, the world of industrial research showed that

these methods often failed on lightly damped mechatronic

systems. Instead, one encountered practical solutions that

included some combination of a controller (perhaps a PID

or one of its close relatives) plus some filters, as shown in

Figure 1. The absence of modern control methods in these

applications continues to this day. By the same token, the

prevalence of PID controllers in industry should make one

ask why such a supposedly under-powered and outdated

method still powers a vast majority of industrial control

loops.

This paper will explore these differences and propose a

historical basis for these very different perspectives. That

being done, the aim is to return discussions of PID control

back to a more common framework. Within the controls

community, the lack of a common framework might seem

like different dialects of the same language. We can translate

between frameworks with enough math (although often we

do not). However, in industry or with co-workers who are

not control engineers, a change of framework is often viewed

as something fundamental, not simply a “control dialect”.

(How would a non-expert recognize these differences?) This

creates a serious issue in outreach, since many scientists and

non-control engineers understand feedback control only as a

PID controller (even when the controller itself may be doing

far more).

If we wish to restore and even amplify the influence of

feedback control principles beyond our community, to be

at the center of discussions on automation and machine

intelligence, we need to make it easier for scientists and

engineers outside our community to embrace the principles.

This must be the case even if they cannot fully internalize

the math. Unifying inconsistent frameworks on the most

ubiquitous control methodology is one start.

II. THE LESSONS OF PHASE-LOCKED LOOPS
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Fig. 2. A classical mixing phase-locked loop (PLL).
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Fig. 3. The baseband model of a classical mixing PLL.

Perhaps the most ubiquitous human-built feedback loop is

the phase-locked loop (PLL). This is an electronic synchro-

nization device that has its origins in the 1930s [28] but now

ends up in every digital watch, phone, tablet, computer in our

lives. It is fundamentally responsible for keeping timing in

almost all electronic circuits (both analog and digital) [29]. A

classical mixing PLL is diagrammed in Figure 2. With a few

trigonometric identities and some low-pass filters not shown

in most PLL texts, this can be reduced to the baseband model

shown in Figure 3. This is still a nonlinear model, but the

sine is a sector 1-3 nonlinearity [29] which is smooth and

well behaved. More importantly for our discussion here, the

voltage-controlled oscillator (VCO) which converts a voltage

into an oscillation frequency is modeled as an integrator (to

get from frequency back to phase), shown in (1).

P (s) =
K0

s
(1)

Because the plant is an integrator, one does not need to

include an integrator in the controller – in this case the

loop filter, F (s) shown in Figure 3. However, it is usually

desirable to track slow changes in frequency and this can be

viewed as a ramp input to the phase detector. For this PLL

designers usually add a second integrator (2),

F (s) =
s+ b

s
⇒ OL(s) =

KdKo(s+ b)

s2
(2)

which makes the controller a PI controller and the open-loop

response into a double integrator at low frequency and an in-

tegrator at high frequency. Because the plant can be modeled

as an integrator, the control is usually straightforward and

the real effort in PLL design is in designing creative phase

detectors and low-drift VCOs. A look at most PLL circuit

diagrams will also reveal a lot of filters that do not show up

in the PLL block diagrams. These are simply considered part

of what is needed to turn the loop into one that is suitable

for a simple control law.

PLLs teach several immediate lessons about practical

feedback loops that generalize to many other loops. The

first is that practicing engineers may work with complex

systems, but they tend to make the feedback loops in those

systems simple. These simple loops maintain intuition and

therefore allow one to debug the system. The second lesson

is that these simple loops are almost always low order;

first or second when possible. In the case of PLLs second
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order loops, in which the loop filter (controller) contains an

integrator are most prevalent for reasons discussed above.

This means that – whether they are described as such or not

in the PLL texts, the controllers are proportional plus integral

(PI) controllers.

The next lessons are a bit more obscure, but there. The

third one is that even when the signals are not sinusoids (as

in for digital communication, digital circuit timing, or speed

control applications), the baseband (modulation domain)

analysis eventually looks like an intuitive argument for the

sector 1-3 nonlinearity and second-order system analysis of

the above PLLs. Our final lesson comes from actual PLL

circuits [29] where there are many filters not described in

the texts. From a modern control perspective, we might

want to consider these filters a response to the full state

dynamics of the system, but we see that PLL engineers view

them as removing the dynamics from the problem. In other

words, even though the actual problem is higher order, these

clever engineers, using a divide-and-conquer strategy, “beat”

the problem into a second-order model. Finally, anywhere

near crossover, the open-loop (OL) response is that of an

integrator, which – having infinite gain margin and 90◦ phase

margin, is the easiest plant to control.

These lessons from the PLL are found in many control

applications. The need to have something that is robust and

can be debugged leads to simplified models (or beating

more complicated models into first or second-order via use

of “divide-and-conquer filtering). Once the model has been

reduced to such a low order the first loop closures are

done with simple controllers: lag (PI), lead (PD), lag-lead

(PID), and double lead. Higher order dynamics and narrow

band disturbance signals – if they are modeled at all – are

often filtered before they ever show up in the loop analysis.

Physical understanding and intuition are key because they

help us debug our system. This means that higher-order

discrete-time models are either relegated to modeling and

simulation, or only applied when the plant behavior is so

benign that the sensitivity of the response to any one physical

parameter is minimal. A positive consequence of controlling

the simple plant model with a simple controller is that much

can be understood about the fundamental behavior of the

loop. A negative consequence is that it is often hard to

migrate the simple models and designs to more complicated

ones in an understandable way.

III. WHY WE DON’T TALK: HISTORICAL MUSINGS

A look through the examples in a classic mechatronic

control book such as [1] reveals quite a few dynamic models,

many for various types of electric motors. While there are

many versions of these, their simplified models are of the

types shown in (3) and (4).

P (s) =
K

s(s+ a)
(3)

P (s) =
K(s+ b)

s(s+ a)
(4)

Similarly, the dynamics of voice coil motors as well as that of

the motion of a rigid body spacecraft maneuvering in space

(along any translational or rotational axis) can be described

by the double integrator model of (5):

P (s) =
K

s2
(5)

These electromechanical models share something in com-

mon with the PLL plant model of (1) – they all contain an

integrator in the forward path. The fact that the plant contains

an integrator means that in most cases, we do not need to

add it into the controller to achieve zero steady-state error

to a step input. Without the need for an integrator, one need

not worry about integrator windup and so there is no need to

add integrator anti-windup to the controller. Without the need

for integrator anti-windup there is less need to separate out

the (non-existent) integrator in the controller. This frees us

to consider controllers in polynomial forms (as multiplied-

out filters or in state space). This means that low-order and

higher order plants can be controlled with the same filter

structure, simply by adding more taps. This is the form that

has been so common in the electromechanical (mechatronic)

world.

Another archetypal second-order mechatronic plant that

should not be ignored is the classical spring-mass-damper

model in which the primary mass of the system is attached

to a fixed surface via spring and mass. This has the charac-

teristic function of

P (s) = K
ω2
d

s2 + 2ζdωds+ ω2
d

, (6)

where ωd is the undamped natural frequency of the denomi-

nator, ζd is the damping factor, and we have chosen a system

with no zeros.

At the same time, the types of loops associated with

process control systems, flow, pressure, level, temperature

[1], [5], [24] are most often characterized with a first order

or first order plus time delay (FOPTD) (sometimes referred

to as first order plus dead time (FOPDT)) model [30].

P (s) =
K

τs+ 1
e−s∆ =

K
τ

s+ 1
τ

e−s∆ (7)

and τ is the time constant of the system. Sometimes a

secondary lag is included which makes the process a second-

order process, often called a second order plus time delay

(SOPTD) or second order plus dead time (SOPD) but what

is notable is the absence of an integrator in the plant model.

While it is readily understood that these models are not the

actual process [30], they are often considered sufficient for

control tasks. These control models are low order and usually

well damped (8).

P (s) =
K

(τ1s+ 1)(τ2s+ 1)
e−s∆ =

K
τ1τ2

(s+ 1
τ1
)(s+ 1

τ2
)
e−s∆

(8)
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Fig. 4. A simple continuous-time loop.
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Fig. 5. Discrete-time control of a continuous plant.

IV. CONSEQUENCES OF AN INTEGRATOR OR LACK

THEREOF IN THE PLANT MODEL

It is well known in the control community that the desire

for having an integrator in the forward path of the control

loop stems from the Final Value Theorem, which says that

if E(s) has no right-half plane poles or zeros then

lim
t−→∞

e(t) = lim
s−→0

sE(s). (9)

Considering Figure 5, with a step input at the reference, r,

R(s) = 1/s.

lim
s−→0

sE(s) = lim
s−→0

s

(

1

1 + P (s)C(s)

)

1

s
, (10)

= lim
s−→0

1

1 + P (s)C(s)
, (11)

An integrator is required in the plant, P or the controller C to

guarantee that the steady state error is 0 [2]. While the PLL

example of Section II demonstrates the need for a second

integrator to track an input ramp with zero steady-state error,

tracking an input step would be more basic, and something

we would want every loop to be able to do. Assuming either

the P or C contains an integrator, P̃ (s)C̃(s) has at least one

integrator factored out, so that ˜P (0) and ˜C(0) are finite.

lim
t−→∞

e(t) = lim
s−→0

s

s+ P̃ (s)C̃(s)
= 0. (12)

If P already contains an integrator, it is not needed in C
for the closed-loop system to track an input step. With no

integrator in P , it must be added to C.
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Fig. 6. A simple discrete-time loop.

The place where this argument runs into trouble is with

disturbance rejection. The caveat is that different areas model

the disturbances as entering at different points in the loop. We

can see the significance of this by looking at any of Figures

4–6. Considering the continuous-time example of Figure 4

for simplicity, we see that

E(s) =

(

1

1 + P (s)C(s)

)

[R(s)−Du(s)]

+

(

P (s)

1 + P (s)C(s)

)

Dy(s). (13)

For steps in the reference input, or the output disturbance, dy ,

the previous result holds. However, step disturbances at du
present a different problem. If we factor out all the integrators

in the plant, so that P (s) = P̃ (s)/sk where k is the number

of integrators in P (s), then

lim
s→0

P (s)

1 + P (s)C(s)
= lim

s→0

P̃ (s)
sk

1 + P̃ (s)
sk

C(s)
(14)

= lim
s→0

P̃ (s)

sk + P̃ (s)C(s)
=

P̃ (0)

P̃ (0)C(0)
=

1

C(0)
. (15)

So, no matter how many integrators are in the plant, the

controller needs an integrator to reject step disturbances at

du. Modeling disturbances as unknown steps at the plant

input is a common trait of process control problems. On

the other hand, if one already has two integrators in their

plant, they might be more inclined to model disturbances

at the plant output or reference input, which would remove

the need to have a third integrator in the forward open-loop

transfer function.
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Fig. 7. Continuous-time PID with back calculation anti-windup.

Adding an integrator to a controller that may saturate

brings with it the possibility of integrator windup. To avoid

this anti-windup methods have become standard practice.

These seem to show up very specifically in PID controllers

(Figure 7) where the integrator can be treated as a separate

element from the rest of the controller. If there is no

controller integrator, then there is no need for integrator anti-

windup, and we are free to implement our controllers in a

more filter centric form. That is, our controller can now take

the form of a linear filter, whether it is in a continuous-time,

sample-data, or discrete-time formulation (Figures 4, 5, and

6, respectively), e.g.

C(z) =
b0z

n + b1z
n−1 + . . . bn

zn + a1zn−1 + . . . an
. (16)

The point is that once we no longer need to separate

the integrator for anti-windup, the linear filter structure
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of the controller is essentially the same for a tenth-order

controller as it is for a second-order controller. We spend

a lot of time with algebra and linear algebra, searching for

roots/eigenvalues of the characteristic equation. We may push

them into forms for which we can easily adjust the roots of

thees polynomials, but – especially in the digital domain –

much of the physical relevance is lost. Still, there are many

problems for which only knowing the general properties of

the model is sufficient. When the dominant low-order model

for control systems is (7), then the incessant need for an

integrator in the controller, C, will emphasize anti-windup

methods. Furthermore, without higher frequency dynamics,

a second-order controller such as a PI or PID should be

enough.

V. REGIONS OF CONTROL
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Fig. 8. The typical ranges in a mechatronic system and how they relate
to proportional-integral-derivative (PID) control. If we close the loop well
below the resonance, we can use PI control. If we close the loop Well above
the resonance, we must engage the derivative term to get phase lead. Hence,
PD control works, although the integrator is often included for steady state
tracking (PID). It is only when we close the loop close to the resonance
that we need a very precise model.

Figure 8 shows the ranges of classical spring-mass-damper

second-order system, as described in (6). However, if we

move out beyond the resonance (or if the resonance is at such

a low frequency as to not be in the region of measurement),

then we are dominated by the double integrator model of (5).

If the loop is closed well below the resonance, a PI controller

may be used. If the loop is closed far above the resonance,
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Fig. 9. The typical ranges in a process system – with a first-order-plus-
time-delay (FOPTD) base model – and how they relate to proportional-
integral-derivative (PID) control. The first-order portion of the plant can be
addressed via a PI controller. It is the presence of time delay that brings
the derivative term into play, as an attempt to mitigate some of the negative
phase incurred by that delay.

a PD controller may be employed. (Even then, we may opt

to add integral action to improve the steady-state error.) It is

when we try to close the loop in the vicinity of the resonance

that we need to carefully use all the PID coefficients. Thus,

we need a far more accurate model than the previous two

cases. Even a double integrator can be seen as an idealization

of the case when the resonant frequency, ωd, is well below

the lowest measurement/plot frequency.

Using such a diagram can provide intuition about the

choices of relative PID gains. The plots of Figure 8 and

the second-order model of (6) describe simple problems

for many engineers working with mechatronic systems.

Simply understanding the regions and which portion of

the PID applies gives some valuable intuition. Engineers

working with “squishy” dynamics (for example, chemical

process control (CPC), bioprocess control (BPC), thermal,

and pressure problems) see a see a wholly different pervasive

simple model, the first-order-plus-time-delay (FOPTD) [also

called first- order-plus-dead-time (FOPDT)] system, with a

characteristic transfer function of (7). While the form of

the transfer function is not dramatically different from a

mechatronic model, the time constants are typically 2–6
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orders of magnitude slower than those of electromechanical

systems and the time delay in the system, ∆, can become

the dominant factor, as demonstrated in Figure 9.

If the dominant model of the system is a first-order, low-

pass with effectively no time delay, a PID controller [even

just the proportional plus integral (PI) portion] will safely

control it. Variations in the magnitude of the model have

little real effect on stability. With well-modeled parameters,

an ideal design uses a PI controller that makes the open-loop

response an integrator, as will be discussed in Section XI.

This corresponds to the design arrived at via internal model

control (IMC) [25], [31]. Mismodeling the pole location

affects the phase margin but does not destabilize it. The

open-loop phase may get close to −180◦ if the integrator

gain is too high, but it will never touch it. Consequently,

conservative designers tend to keep the integrator gain low so

that the integral portion is no longer in effect well before the

plant pole location. Again, we feel that such basic diagrams

can provide valuable insights for the practicing engineer.

A side note here – so obvious in retrospect that it often gets

ignored – is that since the time constants for such systems

are typically so slow (on the orders of seconds or minutes),

any modern embedded processing system will sample fast

enough so that even the conservative nature of the backward

rectangular rule discretization so common in PID designs

has little effect on performance. Making such simple insights

available to practicing engineers working on such problems

should be a boon to their work that makes a strong case for

applying a bit more theory to everyday problems [32].

For these FOPTD models, a key limit is the time delay,

specifically the negative phase associated with the transport

delay in the process that limits what any causal controller

– including a PID – can do. The phase plots in Figure

9 illustrate how limiting delay can be to open-loop phase

margin and therefore to achievable closed-loop performance.

IMC uses a Padé approximation of the delay [33], [25] and

compensates for some of it by forging a bit of lead from the

previously dormant derivative term. This has limits due to the

nonminimum-phase (NMP) zeros of most Padé approximants

[34] and the fact that the approximation accuracy gets worse

for longer delays.

One more caveat that we can share about the differences

in these three simple-yet-iconic system types lies in which

measurements are practical for system identification. In a

mechatronic problem, it is usually reasonable to isolate and

stimulate these systems without harm and so frequency

response functions (FRFs) (also called empirical transfer

function estimates – ETFEs – in the academic literature [35])

are extremely helpful, especially for higher-order, lightly

damped dynamics. They are almost unheard of in CPC prob-

lems, where the idea of injecting chemical stimulus across a

variety of frequencies makes no sense and could only result

in a process reactor full of useless waste product. Even for

such problems as temperature and pressure regulation, the

incredibly slow time constants and lack of lightly damped

dynamics dictate a choice between extracting data from

operational data and/or step responses.

Tied to this are discussions of loop shaping, which are

most easily visualized with Bode plots, such as those in

Figures 8 – 9. With FRF measurements, one can visualize the

effects of controller design on the measured plant response,

but as we avoid those measurements with the CPC problems

and their relatives, loop-shaping concepts become a bit more

strained. The important exception may be if one wants to

use IMC to derive the parameters of a PID controller for the

FOPTD problem. In the absence of time delay, with a perfect

model of the plant, and doing the analysis in continuous

time, IMC gives parameters for a PI controller that result

in an open-loop response that is that of an integrator [25].

This is exactly a loop-shaping result, but the result is more

analytic than based on a direct measurement (Section XI-B).

Consequently, the quality of the loop shaping once again

depends upon the quality of the plant model.

VI. SPECIFYING PID PARAMETERS

Another area of difference between the mechatronic and

process worlds is in how the PID parameters are specified. In

the mechatronic control world, it is hard to find a common

specification for the parameters, but four basic versions of

analog PID control equations show up in the mechatronic

control literature and in commercial PID controllers [36],

[37]. In the time domain representation those forms are:

u(t) = KP e(t) +
KI

TI

∫ t

0

e(τ)dτ +KDTD ė(t), (17)

u(t) = KP e(t) +KI,i

∫ t

0

e(τ)dτ +KD,iė(t), (18)

u(t) = KP e(t) +
KI

TI

∫ t

0

e(τ)dτ +KDTDẋ1(t),(19)

u(t) = KP e(t) +KI,i

∫ t

0

e(τ)dτ +KD,iẋ2(t), (20)

where e(t) error input to the controller, u(t) is the controller

output, and

ẋ1 = ė−
a1
TD

x1 and ẋ2 = ė− a1x2. (21)

In the frequency domain the four forms for C(s) = U(s)
E(s)

are:

C(s) = KP +
KI

TIs
+KDTDs, (22)

C(s) = KP +
KI,i

s
+KD,is, (23)

C(s) = KP +
KI

TIs
+KD

TDs

TDs+ a1
, (24)

C(s) = KP +
KI , i

s
+KD,i

s

s+ a1
. (25)

For ease of explanation, we will keep to the frequency

domain forms. In 24 and 25 we have chosen the derivative

filter gain so that – in combination with the derivative – it

has a high frequency gain of 1. We could also have chosen

to a filter with DC gain of 1. The four forms are chosen by

picking two options:

• explicit time specification and
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• differentiator filtering.

Explicit time specification simply refers to whether the TI

and TD terms are present, or whether they are absorbed into

KI and KD, respectively. It is perfectly legitimate to have

KI,i =
KI

TI

and KD,i = KDTD, (26)

where KI,i and KD,i can be considered “implicit time”

versions of the integral and differential gains. Alternately,

the designer can easily go from explicit to implicit time

simply by setting TD = TI = 1. However, leaving the TI and

TD terms in the equation give the designer some flexibility

and also allow these terms to drop out when the discrete-

time PID is generated. In particular, for the backward rule

equivalent of an ideal PID controller with the sample period,

T = TI = TD, the time terms drop out of the equation,

making it appear much simpler.

The second option is differentiator filtering. We know

that any practical analog differentiator will eventually roll

off. It should make sense to explicitly include this in the

controller design, but this is not common. Perhaps designers

are expecting the plant dynamics and/or circuits to provide

low pass behavior. Still, one might wonder why use of a

low-pass derivative filter is not a standard practice. This

author’s best guess is that the most common implementation

of a PID controller is a backward rule discrete equivalent

approximation. This equivalent puts in its own low pass

filter on the differentiator. The typical over-conservatism

of the backwards rule equivalent saves the casual designer

the trouble and will tend to behave well, especially at low

frequencies.

Understanding these four basic forms are useful to a user

that has purchased a system that includes a PID controller

e.g. the controller of a motion control system. Invariably,

the user trying to model these systems will find that one

of these forms has been used without it being documented

in the product literature. Likewise, technical papers on PID

controllers will often default to one of these forms without

any discussion about the particular choice. Because of this,

it is pretty common to see PID gain ranges that vary all over

the place, even for the same basic controller.

In the process control world, there is a standard form for

PID controllers.

u(t) = K

(

e(t) +
1

τI

∫ t

0

e(λ)dλ+ τD ė(t)

)

, (27)

C(s) = K

(

1 +
1

τIs
+ τDs

)

. (28)

The parameterization of (27) – time domain – and (28) –

transfer function – is often referred to as the ISA (for Inter-

national Society of Automation) form [38], and commonly

presented in the time-domain equivalent. It is typically – but

not always – associated with process control applications,

temperature, and pressure control [17], [19], [20]. There is

an overall controller gain, but the relative gains of the three

parts are adjusted via the terms TI and TD, which nominally

are meant to refer to the integration time (time over which

the integral takes place) and differentiation time (time over

which the derivative takes place), respectively. Even here, the

terminology is confusing, since as written, the integral and

differentiator take place over all time. These terms take the

place of the integrator and differentiator gains. One would

naturally assume that integration and differentiation times (or

time constants) would be characteristics of the device or a

measurement parameter, rather than a control gain.

It is fairly easy to go from (22) or (23) to the ISA form

of (28 by setting KI

KPTI
= 1

τI
and KDTD

KP
= 1

τD
in the former

or by setting KIT

KP
= 1

τI
and KDT

KP
= 1

τD
in the latter.

While the ISA parameterization has the advantage that it is

standard in the process control world, there are two annoying

features. The first is that in place of integral and derivative

term gains, it uses integration and differentiation time param-

eters. This is counter-intuitive because one usually thinks of

these as device properties, not tunable gains. The second is

that there are some very nice properties of the explicit time,

no derivative filtering form under discretization. These will

be discussed in Section VII.

VII. DISCRETIZATION DIFFERENCES AND ISSUES

e u
S

KP

K T sD D

KI

T sI

C(s)

e u
S

KP

K (1-z )D

-1

KI

1-z
-1

C(z)

Fig. 10. Structurally similar analog and digital proportional-integral-
derivative (PID) controllers. A parallel form topology of a simple analog
PID controller (left). When the structure on the left is discretized using
the backwards rectangular rule and the sample period (TS ) matches the
integration time (TI ) and the differentiation time (TD), the digital PID
controller (right) shows much of the same structure.

Another major area of difference between mechatronic

and process treatments of PID control is in discussions of

discretization. Part of this difference is that the time constants

in most process systems are so slow – relative to any modern

real-time compute engine – that “sampling fast”, i.e. 100–

1000 or more times the fastest time constant in the plant is

relatively straightforward. In such an environment, when the

the control action is a frequency decade or more below the

Nyquist frequency, the concerns of the effects of discretizing

the controller are often secondary to other concerns. On the

other hand, mechatronic systems feature much smaller time

constants (usually several orders of magnitude), which means

that the Nyquist frequency and the plant dynamic frequencies

are much closer to each other. Consequently, mechatronic

control engineers worry about real-time computation a lot

more than process control engineers (or at least the former

should) [32].

Furthermore, while consequential time delay in simple

process system models are generally associated with the

process itself, the delays in mechatronic systems are often

recognized from the input, output, and computation chains
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[32]. As we add more dynamics into our system model,

we are more likely to use a controller in the form of (16).

Even if we choose to structure the controller as diagrammed

in Figure 1, we are most likely to recognize that we must

implement those filters digitally. One other detail about this

structure is that the PID block is a placeholder for PID-

ish controllers: PID, PI, PD, lag-lead, lead-lag, double lead,

PIDA, etc.

Furthermore, while many digital control designs might be

implemented by doing direct digital design on a discretized

model of the plant [39], [40], the design of PID controllers

are almost universally done in the continuous-time domain,

and then the discretization is done after the fact. By far the

most common discretization method for PID controllers is

the backwards rectangular rule,

s −→
1− z−1

TS

=
z − 1

TSz
(29)

[18], [19], [20]. The trapezoidal rule

s −→
2

TS

(

1− z−1

1 + z−1

)

=
2

TS

(

z − 1

z + 1

)

(30)

is sometimes discussed, [20], although this requires that the

derivative term include the derivative filtering of (20) and

(25) or the PID controller will have an oscillatory pole at z =
−1 [37]. Readers should appreciate the uniqueness of using

the backwards rule here as it does not show up anywhere

in Matlab except for the PID toolbox. It is not an option

in the c2d() function that is so commonly used by control

engineers. The use of the backwards rule effectively chooses

a low pass filter for the designer (one with pole at z = 0).

Recalling that the backwards rule is not used on anything

but the PID, the filter design and discretization are almost

always done separately, which gives the structure of Figure 1.

Again, those extra filters are typically not in process control

systems and hence the need to consider discretization is also

postponed in most texts.

A simple, but very useful observation is that if one uses

the parameterization of (22) and sets TI = TD = TS then the

backwards rectangular rule discrete equivalent means that:

C(s) = KP +
KI

TIs
+KDTDs =⇒ (31)

C(z) = KP +
KI

1− z−1
+KD(1− z−1) (32)

= KP +KI

z

z − 1
+KD

z − 1

z
. (33)

Note that the discrete differentiator of (33) has a pole at

z = 0. This simple choice means that the discrete-equivalent

PID is intuitively very close to the continuous-time PID,

especially if the sample period, TS , is 1 second. Unless there

is a specific reason to change it, most of the examples in the

rest of this paper will use the explicit-time, no-filtering PID

structure of (22) or its digital equivalent of (33)

VIII. ANTI-WINDUP

How much we think about discretization also affects

how we implement anti-windup schemes. This section will

S-
+

KAW

offset

-

measured
signal

back
calculation

reference
signal

error u uscale
usat

SS

z
-1

z
-1

S S

KP

KI K

KD1-z
-1

C(z)

Fig. 11. Discrete-time PID with back calculation anti-windup.

offset

-

measured
signal

clamping
anti-

windup

reference
signal

error u uscale
usat

SS

z
-1

S S

KP

KI K

KD1-z
-1

C(z)

Fig. 12. Discrete-time PID with integrator clamping anti-windup.

discuss that area, although a deeper dive will be presented

in [41]. Since most of the PID centric literature is from the

process world, and the treatment there is almost entirely a

continuous-time one, it is logical that the most commonly

discussed form of anti-windup would be the back calculation

scheme diagrammed in Figure 7 [42], [43], [44], [45], [46].

Back calculation acts to zero out the input to the integrator

once the PID is saturated by feeding back the difference

between the saturated and unsaturated controller outputs to

the input of the integrator. However, since the controller

signal has three components, matching the exact amount that

goes to the integrator is a matter of tuning a feedback gain,

KAW . A key advantage of this scheme is that it can be

implemented in continuous time or discrete time, as shown

in Figure 11. Note that since we cannot instantaneously feed

back the cancellation term, we require a time delay on the

path of KAW . Back calculation shows up in a lot of the

PID literature, although many examples seem limited to PI

controllers.

However, if the goal is simply to zero out the input to

the integrator while the controller is saturated, embracing

a fully digital method, such as the integrator clamping –

also called conditional integration – shown in Figure 12

accomplishes that [42], [43], [45]. The key is the use of

conditional logic, which is far simpler to implement in digital

logic. Integrator clamping zeros the input to the integrator

when the controller is saturated, clamping the integrator at

its previous level. Because it is in a computer, one can apply

extra intelligence to bleed off the integrator value when the

sign of the error signal is the opposite of the sign of the

contents of the integrator. Essentially, conditional integration

does what back propagation promises to do, but without the

worry of selecting KAW .

IX. DERIVATIVE FILTERING

Another area that seems pushed to the background is that

of derivative filtering. The premise is that we cannot have a

pure differentiator in an actual system, and so at some point
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some sort of low-pass mechanism must be employed. There

seem to be five basic methods for this:

The Analog Ignore It: The basis for this method is

that the analog circuitry for the controller, or the interface

circuits, or the plant itself are necessarily low pass and so the

need for derivative filtering will be handled somewhere else

without need for the designer to be overly concerned. (This is

analogous to all of those filter circuits that the PLL designers

fail to mention.) While this is feasible, it leaves the choice

of the filter up to someone other than the control designer.

Often that works, but it does remove a design option from

the control engineer.
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Fig. 13. Frequency responses of various anti-alias filters. All filters have a
DC gain of 1, with the passband ending at the Nyquist Frequency (fNy =

fS/2 = 1kHz here). Under an assumption that the sample frequency is 10
or 20× the open loop crossover frequency, we can examine the filter phase
response, which can significantly degrade the phase margin of the system,
as documented in Table I. The frequency axis is normalized by the Nyquist
frequency.

Analog The Whole Enchilada: In this form, we wrap

a low-pass filter around the entire controller, e.g. if we are

using (22) then

C(s) =

(

KP +
KI

TIs
+KDTDs

)(

a

s+ a

)n

. (34)

This does provide the needed filtering on the D-term and

has the simplicity that it does not change the zeros of the

PID controller. However, the PI portion of the PID was not

the problem area and likely did not need the filtering. One

can argue that since the PI action happens at low frequency

and the low pass happens at higher frequencies, that these

do not interfere with each other. However, the anti-alias filter

example used in [47] shows that the phase effects of even

simple low-pass filters can be severe, as seen in Figure 13

and Table I. All this is to provide an example that when the

cutoff frequency of a low pass filter is close to the dynamic

frequencies of the control system, the former can cost a

substantial phase penalty.

Analog Just the D: This is the method applied in (24).

It has the advantage that it limits the gain of D term at high

Filter Phase at fNy/10 Phase at fNy/5
Attenuation
at 10fNy

4th Order
Butterworth −15.0276◦ −30.1223◦ −80.1201 dB

4th Order
Elliptical −10.5523◦ −22.8086◦ −40.8932 dB

2nd Order
Butterworth −8.1486◦ −16.4211◦ −40.0605 dB

TABLE I

PHASE PENALTY OF REPRESENTATIVE ANTI-ALIAS FILTERS. THE

CORNER FREQUENCY IS CHOSEN TO BE AT THE NYQUIST FREQUENCY,

HALF THE SAMPLE FREQUENCY, fNy = fS/2. COMPARISONS ARE

MADE WITH RESPECT TO THE NYQUIST FREQUENCY AT IT IS

CONSIDERED THE LIMIT OF INTENTIONAL DIGITAL CONTROL ACTION.

THE TWO BUTTERWORTH FILTERS ARE FLAT IN THE PASSBAND, BUT

INCUR A LARGER PHASE PENALTY RELATIVE TO THE ELLIPTICAL

FILTER FOR STOPBAND GAIN ATTENUATION THEY PROVIDE. ON THE

OTHER HAND, THE ELLIPTICAL FILTER HAS UP TO 3 DB MAGNITUDE

DISTORTION IN THE PASSBAND. ALL OF WHICH IS TO SAY THAT THE

CHOICE OF ANTI-ALIAS FILTER STRUCTURE SHOULD NOT BE SEPARATED

FROM THE AVAILABLE SAMPLE RATE OPTIONS, NOR THE ROBUSTNESS

OF THE SYSTEM TO GAIN AND PHASE DISTORTIONS.

frequency while not affecting the PI region of the controller.

However, it does change the overall algebra of the controller

equations, complicating analysis [48].

Digital Ignore It: This one stems from using the back-

wards rectangular rule for computing the discrete equivalent,

which conveniently puts a low pass filter on the digital D-

term at z = 0.

However, the most popular form of limiting the noise from

the D-term is Set KD = 0. That is, while we talk about PID

controllers, any informal survey of control engineers using

PID controllers reveals that the vast majority of these designs

have zeroed out the D term and are really PI controllers.

X. DIFFERENCES IN MEASUREMENTS AND MODELING

10%

90%

Time

Input
Actual

Response

Ideal
Response Settled

10%

90%

Peak

Response

Time

Settled

Ideal
Response

Input

Fig. 14. Idealized responses of first (left) and second (right) order models.

The differences in dominant low order models also affect

how these models are identified. We will stay with our

assertion that the dominant models in the process control

worlds are the first-order-plus-time-delay (FOPTD) with the

occasional second-order-plus-time-delay (SOPTD) model.

Key to each of these is that they are open-loop stable and do

not contain any integrators [21]. Furthermore, the SOPTD

model has real poles, rather than taking the form of an

underdamped resonance. These simple models typically lack

any zeros in the response, which makes them amenable to
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identification via step response methods – often referred

to as process reaction curves in the process control world

[20], diagrammed in Figure 14. If the system is dominated

by one of the poles, then relay tuning or Ziegler-Nichols

Tuning (or some similar method) may be used [20] Because

these models are first or second order, even discrete-time,

time-domain methods can retain some physical intuition;

something that is much harder for higher order models.

Time

Input
First Integrator

Response

Second Integrator
Response

Fig. 15. Idealized step response of single and double integrator.
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Fig. 16. Time domain, discrete-time model, system identification diagram.
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Fig. 17. Simple ARMA plant regression model.

When the dominant low-order model contains an integrator

then a step response does little good. For example with

the ubiquitous double integrator the first integrator turns the

input into a ramp and the second into a quadratic (Figure

15). Since the plant is not open-loop stable, there is no settle

time and we cannot extract the gains simply from a ratio of

steady state output to steady state input. Closing the loop to

produce a step response of a stable system requires at least

some lead, and so some nominal PD controller must be used

(assuming there are not higher order dynamics of concern).

We can put in a square wave function and try to discern the

gain constant from there.

Neither of these provide a strategy for dealing with other

dynamics in the model. Since step response methods are not

overly useful, these plants suggest input signals without DC

content: either random (pseudo-random) or oscillatory input

signals. We also start considering more more generalized

structures for the plant model. Putting these together we get

to the time-domain regressions on discrete-time parametric

models, as diagrammed in Figure 16, or frequency-domain,

non-parametric methods [35], [49]. The former suffer from

a lack of of connection between the discrete-time model

coefficients and the physical parameters. The diagram il-

lustrates how components of the input-output response of

the plant, the sensors, actuators, ADCs, and DACs, all get

subsumed into the digital model. While this works for some

systems, the loss of physical intuition often makes it much

more difficult to debug a real system. The non-parametric,

frequency domain methods suffer from the need to extract

model parameters from the frequency response function

(FRF) [50], [51], [52].

In any event, we can readily see that the switch between

the stable FOPTD and SOPTD models prevalent in the

process control world and the marginally stable models

so prevalent in the mechatronic world not only change

which measurement methods are used, but also affect the

physicality of the extracted model parameters from those

measurements.

There is more evidence for this in examining the operation

of i-pIDtune, which is an interactive tool for system identi-

fication and PID control design [53]. While this is more of

a teaching tool than an industrial application system (as it

does not generate test vectors for export to physical devices

nor import the measured responses resulting from those test

vectors), it provides an interesting view of what some of the

leading researchers in the use of PID controllers in process

control consider important. The models considered for PID

tuning are either first or second-order plants without inte-

grators, although with the possibility of non-minimum phase

(NMP) zeros. The recent update to the tool, i-pIDtune 2.0

[54] expands the set of plants to include second-order plants

with integrators. In both versions of the tools, zero mean

signals are used as a stimulus (either Pseudo-Random Binary

Signals – PBRS or multi-sines) is different from the normal

step-response methods. This frees the identification step

from needing to specify a model structure in advance. The

authors use an AutoRegressive with eXternal input(ARX)

model structure to match a general discrete-time transfer

function model and then do model reduction to extract the

parameters for one of their supported models. There is an

option in Version 2.0 to remove known integrators from the

simulation a priori. However, even this advanced teaching

tool illustrates that the presence or absence of an integrator

in the plant structure changes how we try to identify it.

Thinking about how this might apply in practice, we could

easily see how mechatronic and process control engineers

would have a vastly different view of plant identification,

based upon their experience in dealing with plants with and

without integrators.

Another difference between mechatronic and process con-

trol system identification is the relative importance of time

delay. For many mechatronic systems, the amount of delay

relative to the time constants of the system are small enough

that issues of high frequency dynamics (e.g. resonances

and anti-resonances) dominate. The time delay may not be

included in the model if small enough.

On the other hand, when the dominant models for a set

of problem always have “plus time delay” in their names, it

seems that we are less likely to ignore those. This creates
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an issue for typical time-domain identification with linear,

discrete-time models because one often represents the delay

with a Padé approximant [33]. The most accurate of these

have at least one non-minimum phase (NMP) zero. Adding

this to the identification model begs the question as to

whether it should just be considered another order of the

model or whether the effects of delay on the data can be

separated out (as we can in the frequency domain).

XI. DIFFERENT VIEWS OF LOOP SHAPING

An oft-quoted story about Mahatma Gandhi is that when

a journalist asked, “What do you think of Western civiliza-

tion?” he responded with, “I think it would be a good idea.”

Similarly, loop shaping is often considered a good idea for

control design, but how it is viewed with respect to the use

of PID controllers is again different in the mechatronic and

process control worlds. More examples from this discussion

can be found in [55].

In the mechatronic control world, loop shaping is often

described and evaluated in terms of the frequency domain.

It is possible to work directly from frequency response

function (FRF) measurements of the plant, adjusting con-

troller components until the measured (or projected) open-

loop response looks favorable. A common theme proposed

by this author [56], [57] and others [58], [59], [60] is to shape

the open-loop response towards that of an integrator. This

can be done in a variety of ways, but results in a response

that can be easily evaluated and optimized for its closed-

loop properties. Following this philosophy, a combination

of PID-like simple controllers and filters can be added and

adjusted until the open-loop frequency response looks like an

integrator. The key limitation here is time delay which can be

mitigated some by lead filters, but eventually eliminates the

phase margin (PM) and limits the open-loop gain crossover

frequency.

From an industry perspective, or the perspective of some-

one trying to transfer a methodology into an industrial envi-

ronment, making the open loop an integrator is “explainable”

loop shaping.

• There is no need to convert to state space or use H∞,

(but we could).

• It is so intuitive that it can be done without using to

optimization package (but we could).

• It can be understood in continuous or discrete time.

• It can be accomplished algebraically and/or graphically.

• The FRFs provide an easy-to-understand visualization.

• It enables simple computations for evaluating against

open and closed-loop constraints.

All of this means that using this tuning philosophy makes it

relatively easy transfer to industry without much pushback.

After all, we’re not taking away their PID; we’re showing

them how to tune it up. A side benefit is that success in

transferring improvements to industry PIDs in this manner

opens the door to other things we might want to add to an

industry control system.

Notably, for portions of the plant response that can be

modeled with stable, minimum phase, proper filters, an

inverse filter corrects the response. It is not practical to

directly invert pure integrators, since pure differentiators

are rarely practical, whether in continuous or discrete time.

Instead, we are often left with compensating the integrator(s)

with lead elements. These have a built-in corner frequency

for the zero and so the amount of lead compensation is

limited.

A. Loop Shaping in the Frequency Domain

Frequency domain measurements are often favored over

time-domain measurements for lightly damped mechatronic

systems because they can often clearly resolve the key dy-

namics from those that are below the noise floor and establish

what is feasible. However, frequency domain identification

results in FRFs, a set of ordered pairs of frequencies and

complex response, which do not immediately fit into an

analytic transfer function or state-space model.

Frequency domain loop shaping is very visual, most

commonly working from Bode plots. The advantage of

this in systems that are well suited to frequency domain

measurements, is that the design can be done working

directly from the measurements, without having to reduce

the measurement to an analytic model. In the days before

widespread use of powerful digital computing tools, this was

a very practical way of designing controllers, particularly for

single-input, single-output (SISO) systems. Three examples

are particularly illustrative here, in part because we can

compare them to doing the same design using Internal Model

Control (IMC) in Section XI-B. These are:

• Loop shaping for a first-order, plus time delay (FOPTD)

model provides two examples. We will look at the PID

controller we need for a first order without time delay

and then see how that changes when we have time delay.

• Loop shaping on double integrator. This model is far

more common in the mechatronics world, and on the

simpler side of what is typically done in the frequency

domain, but it is still illustrative of how we configure a

PID for such systems.

1) First Order Plus Time Delay (FOPTD): The model for

a FOPTD plant was given in (7). For ∆ = 0, this reduces to

a simple first order model,

P (s) =
K

τs+ 1
=

K
τ

s+ 1
τ

=
Ka

s+ a
(35)

If we take the objective of our controller as making the open-

loop response resemble that of an integrator, then we expect

C(s) =
KC(s+ a)

s
= KC +

KCa

s
= KP

(

1 +
KI,ia

KP s

)

.

(36)

Here, we are using the implicit time form from (25) just to

simplify the text. This yields an open-loop response of:

P (s)C(s) =
KKCa

s
. (37)

In the absence of time delay, a well matched PI controller

turns the no-delay curve of Figure 9 into a straight integrator

curve with a phase of −90◦, resulting in infinite gain margin

11
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Fig. 18. Bode plot for first order plus time delay plant plant, but with
varying gains.
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Fig. 19. Bode plot for three continuous-time (CT) controllers. One is a
PID, designed as a PI plus a filtered PD, in series. The value for the low pass
filter, a2, was picked, and then the values for b, a1, and KC were picked
from the IMC calculations in (79). The second is a PID designed from
adjusting the b, a1, and KC parameters until the open-loop and closed-
loop responses looked reasonable. The third is a PI controller where the
PI zero matches the first order pole, and the gain is adjusted to match the
open-loop response of the other two.

and 90◦ phase margin. As mentioned earlier, it is the time

delay that eats away the phase margin, as seen in Figure

9. The only element of a PID that can restore any of the

phase is the D-term. We can plot the effect of e−∆s directly

in frequency responses since this results in a pure phase

component, but to work with any transfer function (or state-

space) we would want to approximate this, typically with a

Padé approximation. In most applications, a first order Padé

approximant [33] is used:

e−∆s ≈
2
∆ − s
2
∆ + s

. (38)
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Fig. 20. Open-loop responses for nominal plant from Figure 18 and the
three different controllers of Figure 19.
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Fig. 21. Closed-loop responses for nominal plant from Figure 18 and the
three different controllers of Figure 19.

Although the first-order Padé (38) is commonly used as a

rational approximation of time delay in controller design, it

is worth noting that it is bounded below by −180◦, while

the phase of e−∆s decreases without bound towards −∞.

We should be cautious about using this when ∆ is close to

the sample period or larger.

If we want to compensate for this, we need a lead circuit

C(s) =
KC(s+ a)

s

(

s+ b

s+ a1

)

. (39)

As before, the first term serves to compensate for the plant

pole. The second factor is a phase lead if 0 < b < a1. If

we want to extract our PID parameters from this, we can

compare it to one of our earlier formulations. For simplicity

we will choose the implicit time with derivative filtering form

of (25). If we put that form over a common denominator, we

12



10-2 10-1 100 101 102

Frequency (Hz)

-30

-20

-10

0
M

ag
ni

tu
de

 (
dB

)
FOPD + PID from IMC Closed-Loop Responses

10-2 10-1 100 101 102

Frequency (Hz)

-150

-100

-50

0

P
ha

se
 (

de
g)

Fig. 22. Closed-loop responses for plants of Figure 18 and IMC designed
PID controller of controller of Figure 19. The variation in responses is due
to the variation in the plant responses from Figure 18.

have:

C(s) =
KP s(s+ a1) +KI,i(s+ a1) +KD,is

2

s(s+ a1)
, (40)

=
(KP +KD,i)s

2 + (KPa1 +KI,i)s+KI,ia1
s(s+ a1)

,(41)

C(s) =
KCs

2 +KC(a+ b)s+KCab

s(s+ a1)
. (42)

We can extract our PID coefficients from equating the

numerator terms of (41) and (42). We note that in (42),

the only free parameters are b, a1, and KC . The first two

determine when the lead action starts and ends. The last one

is the overall gain of the system which is usually set from

open-loop gain and phase margin considerations. Matching

the numerator terms of (41) and (42), we get

KC = KP +KD,i, (43)

KCab = KI,ia1, and (44)

KC(a+ b) = KPa1 +KI,i. (45)

Finally, from these, we get the PID gains:

KP =
KC

a1

[

(a+ b)−
ab

a1

]

, (46)

KI,i = KC

ab

a1
, and (47)

KD,i = KC −KP . (48)

The FOPTD plant responses for five slightly varying plants

are plotted in Figure 18. PI and PID controllers are plotted

in Figure 19, where one set of PID parameters was generated

from the IMC loop shaping of (79), while another was

tuned by visually adjusting the open-loop response. The

PI controller was adjusted to match most of it’s open-loop

response to the other two. The resulting open and closed-

loop responses are shown in Figures 20 and 21. Note that the

action of both PID designs in Figure 19 is to add the desired

phase lead to the controller not seen in the PI controller.

This extra lead gives more phase margin (Figure 20) allowing

increased closed-loop bandwidth with less peaking (Figure

21. Figure 22 shows variations in the closed-loop response

when the IMC designed PID is used on mismatched plant

models.
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Fig. 23. Bode plot for double integrator plant, but with varying gains.
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Fig. 24. Bode plot for a continuous-time (CT) proportional plus derivative
(PD) controller. The value for the low pass filter, a1, was picked, and then
the values for b and KC were picked from the IMC calculations in (93).

2) Double Integrator: If the FOPTD of (7) is the iconic

model for process control systems, then the double integrator

of (5) is the iconic model for mechatronic systems. If we

ignore for a moment, the possibility of step disturbances at

the plant input as discussed in Section IV, our instinct is that

this system does not need another integrator in the controller.

With the plant phase already at −180◦, what it needs is some

phase lead to stabilize the system. The only way to get this

13
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Fig. 25. Open-loop responses for plants of Figure 23 and controller of
Figure 24.
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Fig. 26. Closed-loop responses for plants of Figure 23 and controller of
Figure 24.

with a PID is using the D-term:

C(s) = KP +KD,i

(

s

s+ a1

)

, (49)

=
(KP +KD,i)

[

s+ KP a1

KP+KD,i

]

s+ a1
, (50)

C(s) =
KC (s+ b)

s+ a1
. (51)

This always produces a lead, since KP

KP+KD,i
< 1 for any

positive values of KP and KD,i. How much lead we have

is determined by the relative sizes of KP and KD,i. If one

accepted the simple model as truth, one might be tempted

to make b as small as possible and a1 as large as possible,

but we know practically that the double integrator behavior

at low frequency helps minimize steady-state error to a step

or a ramp, and noise and unmodeled time delay often put a

limit on a1. From these, we get the PID gains:

KC = KP +KD,i and (52)

b =
KPa1

KP +KD,i

.. (53)

From here we get the PD coefficients (there is no I-term):

KP = KC

b

a1
and (54)

KD,i = KC

(

1−
b

a1

)

. (55)

The double integrator plant response, PD controller, open-

loop, and closed-loop responses are plotted in Figures 23–

26. The plant gain is set to 1 and the low pass filter corner,

a1 is set to 100. From there, the rest of the gains were

adjusted using the formulas from the IMC loop shaping

below, particularly (93). This results in the PD controller

of Figure 24. We can see the effect of the practical lead in

Figure 25, producing close to 60◦ of phase margin. The use

of parameters from IMC results in the magnitude crossing

0dB near the frequency of maximum phase margin and

produces very clean closed-loop responses with minimal

peaking (Figure 26).

B. Loop Shaping Using IMC
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Fig. 27. Internal Model Control (IMC)

A common diagram for Internal Model Control (IMC) [31]

is shown in Figure 27, although this one has been augmented

with more noise and disturbance inputs than are typical in

the standard process control centric diagrams. We can see

that the formulation uses a model, P̂ , of the plant, P , to

construct the controller. With a bit of foreshadowing, one

might note that this method will depend on how closely P̂
– which can be considered an observer – approximates P ,

but for now we will go through the algebra.

y zur1 e

dy

SS S

+-

P

Q

P

Fig. 28. Internal Model Control (IMC) rewritten to isolate controller.
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We can use loop manipulations to redraw Figure 27 to that

of Figure 28, ignoring for now most of the disturbance inputs.

We can now see that the controller, C(s) is constructed with

the positive feedback loop:

C(s) =
Q(s)

1− P̂ (s)Q(s)
(56)

This is often recognized as the Youla-Kucera parameteriza-

tion [61], [62], although the latter typically assumes that P
and P̂ are stable. For our purposes, this means that there are

no unstable poles or integrators in either, which right away

is a difference from models so typical in the mechatronic

world. One can wrap the unstable/marginally stable plant in a

stabilizing feedback loop, but that clouds the IMC discussion.

Our goal is to point out once again that IMC is most typically

applied to plants that are already stable and lack an integrator.

The a key feature of the Youla-Kucera parameterization is

that Q is stable and proper. As it is used in IMC, Q will

also be used to invert the plant, P . If the plant is stable

and strictly proper, with a pole-zero excess of m, then IMC

usually adds in a low-pass filter (LPF) of the form:

F (s) =
1

(τF s+ 1)
m =

(

1
τF

s+ 1
τF

)m

, (57)

so that Q(s) = Q̃(s)F (s) is proper.

OL(s) = P (s)C(s) =
P (s)Q(s)

1− P̂ (s)Q(s)
(58)

At this point in most IMC descriptions, there is a slight

of hand in which the model, P̂ , is replaced by the plant, P .

In other words, there is an assumption of perfect modeling,

so that P̂ (s) = P (s) and

OL(s) = P (s)C(s) =
P (s)Q(s)

1− P (s)Q(s)
. (59)

Now if P̂ (s) = P (s) is invertible (i.e. no RHP zeros),

then pick

Q(s) = Q̃(s)F (s) = P̂−1(s)F (s) = P−1(s)F (s). (60)

This gives:

Q(s)P̂ (s) = P−1(s)P (s)F (s) = F (s) (61)

so that

OL(s) =
P (s)Q̃(s)F (s)

1− P (s)Q̃(s)F (s)
=

F (s)

1− F (s)
. (62)

If the pole-zero excess of P is one, as is the case for the

FOPTD plant so common in process control systems, then

m = 1 and

OL(s) =
1

τF s+1

1− 1
τF s+1

=
1

τF s
, (63)

In its most ideal form, and for the most common plant

model in the process control world, IMC turns the open loop

frequency response into an integrator. This ideal response

depends upon a close match between P̂ (s) and P (s). That

is, the benefits of IMC truly depend on having a good model.

(It’s in the name, after all.)

In the particular case of the FOPTD model of (7) with

no time delay (∆ = 0), Q̃(s) would have a single zero to

cancel the plant pole. The controller, C(s) ends up being a

PI controller:

C(s) =
P−1(s)F (s)

1− F (s)
, (64)

=

τs+1
K(τF s+1)

τF s
τF s+1

=
τs+ 1

KτF s
, (65)

C(s) =
τ

KτF

(

1 +
1

KτF s

)

. (66)

This matches our previous loop shaping example using PID

on a FOPTD model with no delay, but is arrived at just

through algebra.

When we do have delay, then the D term of the PID

becomes important. For those in the mechatronic world, this

is logical as it is the only part of a PID that can give us

phase lead. However, the unpopularity of the use of the

frequency domain in the process control world means that

this bit of intuition must be arrived at differently. In this

case, the desire to use algebraic methods means that the time

delay gets represented by a Padé approximation of (38) [33].

Critical to this is the choice of the many approximations

to use, but for the classic FOPTD model it seems that a

first order approximant with a single stable pole and non-

minimum phase (NMP) zero. If we are using only a PID, then

the question becomes how to use the D term to compensate

for some of the excessive negative phase of the NMP zero.
1) First Order Plus Time Delay (FOPTD): To do repeat

the loop shaping of Section XI-A.1 using IMC, we apply the

Padé approximation [33] of (38) to (7), to yield

P (s) =
Ka

s+ a

( 2
∆ − s
2
∆ + s

)

. (67)

In this case, we compute:

Q̃(s) =
(s+ a)( 2

∆ + s)

K 2
∆

, F (s) =
a22

(s+ a2)2
, (68)

which means:

Q(s) =
a22∆(s+ a)( 2

∆ + s)

2K(s+ a2)2
, (69)

and

P̂ (s)Q(s) =

(

a22∆

2

)

( 2
∆ + s)

(s+ a2)2
. (70)

Finally,

C(s) =

a2

2
∆(s+a)( 2

∆
+s)

2K

1−
(

a2

2
∆

2

)

( 2

∆
+s)

(s+a2)2

, (71)

=
a2

2
∆

2K (s+ a)( 2
∆ + s)

(s+ a2)2 −
a2

2
∆

2 ( 2
∆ + s)

, (72)

C(s) =
a2

2
∆

2K (s+ a)( 2
∆ + s)

s
(

s+ a2
(

2 + ∆a2

2

)) . (73)
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Looking at (73), we recognize the PI control portion of
s+a
Ks

that we had before. That handles the first order dynam-

ics. We also know from our frequency domain intuition that

the rest of the controller needs to be a lead circuit in order to

counteract the negative phase of the time delay. That means

that we need the zero from the 2
∆ to happen before the pole

from the a2(2 +
∆a2

2 ) term.

a2

(

2 +
∆a2
2

)

>
2

∆
, (74)

4a2 +∆a22 >
4

∆
, (75)

∆a22 + 4a2 −
4

∆
> 0, (76)

a2
∆

2
+ 4

a2
∆

−
4

∆2
> 0, . (77)

If we complete the square, we end up with:
(

a2 +
2

∆
(
√
2 + 1)

)(

a2 −
2

∆
(
√
2− 1)

)

> 0. (78)

Our free parameter here is a2. Equation 78 will hold if a2
is very positive or very negative. Since we want a causal

filter, we need a2 > 0, which means our requirement is

a2 > 2
∆ (

√
2 − 1) for our controller to have a lead. We can

interpret this as needing the low pass filter on the D-term to

be far enough out to leave room for some lead action.

With C(s) defined in (73), our open loop response be-

comes:

P (s)C(s) =
a2

2
∆
2 ( 2

∆ − s)

s
(

s+ a2
(

2 + ∆a2

2

)) . (79)

This is the best that the IMC design can do, and we know

from (73) that it has provided some phase lead. Comparing

this to the lag-lead controller of (39), we see that

a1 = a2

(

2 +
∆a2
2

)

, b =
2

∆
, and KC =

a22∆

2K
. (80)

We see that the IMC design has determined most of our

parameters, except for the final selection of a2 which de-

termines a1. From these values, we can use (46)– (48) to

calculate the PID gains.
2) Double Integrator: To do repeat the loop shaping of

Section XI-A.2 using IMC, we have:

Q̃(s) =
s2

K
, F (s) =

a22
(s+ a2)2

, (81)

which means:

Q(s) =
a22
K

s2

(s+ a2)2
, (82)

and

P̂ (s)Q(s) =
a22

(s+ a2)2
. (83)

Finally,

C(s) =

a2

2

K
s2

(s+a2)2)

1−
a2

2

(s+a2)2)

=
a2

2

K
s2

(s+ a2)2 − a22
, (84)

C(s) =
a2

2

K
s

s+ 2a2
. (85)

This controller is a lead, but with a pure derivative numerator.

If we want the PD controller from Section XI-A.2, we need

to pick a different F (s) filter. Using the same Q̃(s) from

(81), but

F (s) =
s+ b

(s+ a2)3

(

a33
b

)

, so that (86)

Q(s) =
s2

K

(

a32
b

)

s+ b

(s+ a2)3
, (87)

and

P̂ (s)Q(s) =

(

a32
b

)

s+ b

(s+ a2)3
, (88)

Finally,

C(s) =

s2

K

(

a3

2

b

)

(s+ b)

1−
(

a3

2

b

)

s+b
(s+a2)3

, (89)

=

s2

K

(

a3

2

b

)

(s+ b)

(s+ a2)3 −
(

a3

2

b

)

(s+ b)
, (90)

C(s) =

s2

K

(

a3

2

b

)

(s+ b)

s3 + 3a2s2 + a22
(

3− a2

b

)

s
(91)

To get the lead of Section XI-A.2, we need

a1 > 0 and a1 = 3b, (92)

which simplifies (91) to

C(s) =
3
K
a22(s+

a2

3 )

s+ 3a2
(93)

To get to the form of (51), we match coefficients:

KC = KP +KD,i =
3

K
a22 (94)

b =
a2
3

(95)

a1 = 3a2, (96)

KP

KP +KD,i

a1 =
a2
3
, (97)

KP

KP +KD,i

3a2 =
a2
3
, (98)

KP

KC

=
1

9
. (99)

Finally,

KP =
a22
3K

and KD,i =
8a22
3K

. (100)

Note that IMC gives a very specific set of relationships

in order to generate the needed, practical lead controller

this problem requires. Even though the double integrator is

not asymptotically stable, the Youla-Kucera parameterization

[61], [62] still yields good parameters.
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C. Loop Shaping Summary

The examples of this section have tried to show how –

within reason – the graphical loop shaping in the frequency

domain favored by mechatronics oriented control engineers

and the algebraic loop shaping in the transform domain

favored by the process oriented control engineers, are largely

working towards the same control design. The IMC examples

above relied on the plant model, P̂ (s), matching the true

plant, P (s), but the method robust to model inaccuracies is

one of the foci of IMC research not covered here. In the

case of the frequency domain methods, the robustness or

lack thereof is very visual, showing up in the Bode plots.

Still, what has been demonstrated is that we can draw a lot

of intuition from the frequency domain to apply to our IMC,

and we can draw a lot of parameter specifications from IMC

to test in the frequency domain.

XII. UNIFYING VIEWS OF PID CONTROLLERS

Perhaps no single control technology would be embraced

more universally by engineers and scientists both inside and

adjacent to our field than higher performance, more universal

PIDs. We make a few suggestions for how to get there:

• Embrace the digital. Don’t obscure the relationships

between CT and DT parameters.

– We know the controller will be digital; let’s let

practicing engineers know how we handle it.

• Standardize simple model extraction for PID parameters

from measurements.

– Build these methods directly into our real-time

controllers on parallel hardware.

– Connect measurements, CAD tools (modeling &

design), and implementation, so as to make itera-

tion far more painless. The mantra here should be:

“Connect, connect, connect.”

• A common parameterization mostly that makes sense

in both analog and digital helps. This paper has tried

to show the utility of the continuous-time, no derivative

filtering model of (22):

C(s) = KP +
KI

TIs
+KDTDs,

and sets TI = TD = TS then the backwards rectangular

rule discrete equivalent means that:

C(z) = KP +
KI

1− z−1
+KD(1− z−1).

• Do not be cavalier about the filtering. Respect the phase

effects of noise and derivative filtering. That being said,

be open to using filters for loop shaping to help make

the open loop an integrator.

• The loop shaping discussion of Section Section XI

showed that loop showed that frequency domain and

IMC based loop shaping should not be viewed as op-

posites, but should be used complimentarily. The IMC

gives a great starting point for picking controller param-

eters, while the frequency domain plots provide instant

intuition about the margins (and therefore robustness)

of the resulting controller design. On the other hand,

it is the frequency domain that instantly informs us of

the “need for lead”, which guides how we construct our

IMC problem.

XIII. CLOSING: REMEMBER THE AUDIENCE

This paper has tried to bridge the gap between the mecha-

tronic and process control views of PID controllers. For those

of us who spend a lot of time doing control research, PID

may be viewed as:

• the main controller,

• a placeholder until we can insert our more sophisticated

controller,

• a fundamental part of our overall, sophisticated con-

troller,

• something for beginners, or

• all of the above.

However, for our colleagues in adjacent fields or for folks

with little control background, PID is feedback control. It

seems that we often miss opportunities to have the controls

community lead in the machine intelligence world, because

we do not spend enough effort reaching out to these people.

If we did, then those working in machine intelligence would

know that sometimes they need to call those folks who

care about how their algorithms interact with the physics

of dynamic systems.

PIDs are the “gateway drug” for these colleagues to

embrace more feedback principles. Speaking with more

commonality may reduce the number of published papers but

will greatly improve our interaction with the larger world.

Even if we in the the controls community have our own

dialects, we should be willing to provide a “Rosetta Stone”

of PIDs for those outside – but adjacent to – our field.
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