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Abstract— This paper proposes a practical algorithm for

identifying the dynamics of a continuous-time linear, time-

invariant system, embedded in a sampled feedback loop with

fixed sample time, T . We will show that if the closed-loop

configuration is stable, it is rather straightforward to design

a set of experiments using a spectrum analyzer that will

identify the plant transfer function, Gp(jω), to frequencies

well beyond the Nyquist frequency, ωN = π
T

. Experimental

results are included.

I. Introduction
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Figure 1: Closed-loop sampled data system.

In this paper, we examine the identification of the dy-
namics of a sampled-data system, as shown in Fig. 1, at
frequencies above the Nyquist frequency, ωN = π

T
, where

T is the time between samples [1]. The configuration that
we will study is a common configuration where both the
plant and the controller are continuous1, but the output of
the plant is only sampled every T seconds.

This type of sampled data system has been studied as far
back as Ragazzini and Zadeh [2]. In general, the analysis
of such systems has been carried out with the assumption
that T was small enough such that |Gp(jω)| was negligi-
bly small for ω ≥ π

T
, the Nyquist frequency. This paper

deals with the identification of dynamics of Gp(jω) above
the Nyquist frequency. We will show that if the closed-loop
configuration is stable, it is rather straightforward to design
a set of experiments using a spectrum analyzer2 that will

∗The work reported in this paper was performed by the authors
at Hewlett-Packard Laboratories.

1Here lumped together in Gp(jω).
2For example, an HP 3562A Dynamic Signal Analyzer.

identify Gp(jω) to arbitrarily high frequencies3. This work
can be considered to be an extension of the relatively well
known off-line, non-parametric algorithms for identification
of the dynamics of a continuous-time system embedded in
an analog feedback loop from transfer function measure-
ments of the closed-loop system [3]. This is in contrast to
recent results in the identification of a plant embedded in a
multi-rate digital control system, which extend well known
on-line, parametric techniques [4, 5].

I.A Overview

The rest of the paper will proceed as follows. Sec-
tion II presents some background material on the Sam-
pling Theorem and its extensions. Section III presents a
brief derivation of the formulae necessary to determine the
continuous-time transfer function of a linear, time-invariant
(LTI) system that is embedded in a sampled control-loop
from measurements of the response characteristics of the
overall control-loop. The problem is formally described in
Sec. III.A. Because the sampler is the source of most of
the difficulties in the analysis of the situation, Sec. III.B
is devoted to a discussion of the properties of sampled sig-
nals within the control-loop. The equations constraining
the overall control-loop are stated in Sec. III.C and solved
to relate the spectra of the system input and output in the
general case. Section III.D considers two special case in-
puts for which the system response is particularly simple,
and Sec. III.E proposes a procedure for determining the
plant transfer function, Gp(jω), from the response of the
closed-loop system to a series of single-frequency inputs. A
test case of the procedure is presented in Sec. IV and these
results are discussed in Sec. V.

II. Background

The fundamental work on sampling was done by Nyquist
[6] and popularized by Shannon [1]. The Sampling Theo-
rem, simply stated, says that in order to recover a bandlim-
ited signal with its highest frequency component at fc, the
sampler must be run at fs = 1

T
≥ 2fc. The basic assump-

tion here is that the signal is low-pass. In contrast, we will

3Bounded only by the bandwidth of the spectrum analyzer, not
the control system.
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Figure 2: Open-loop sampling.

assume that we have a narrowband signal (BW � 2fc),
but that the band center is not necessarily at f = 0 and in
fact will often be above fs.

II.A Previous Extensions of

the Sampling Theorem

The basic Nyquist sampling theorem was extended by
Linden [7] to include the interlaced sampling of two sam-
plers whose sample intervals are shifted in time by some
number α. For α 6= nT (n an integer), the effective Nyquist
frequency is raised. If the output of the system, y(t) in
Fig. 2, is periodic i.e., y(t) = y(t + τ), and if T 6= nτ ,
then the same effect can be achieved by retaining the pre-
vious samples of y(t) and adding the new samples (which
are shifted in time by the fact that T 6= τ). Sampling oscil-
loscopes make use of this principle to sample periodic func-
tions that have frequency content above the Nyquist rate of
the oscilloscope based upon a single sampler[8]. Note that
the only assumption made about the waveform measured
by the oscilloscope is that it must be periodic.

II.B Sinusoidal Input to LTI

System with Sampled Output
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Figure 3: Sinusoidal input to LTI system with sampled output. Here

ζn =

[
1−e−j(ω0+nωs)T

j(ω0+nωs)T

]
, and an “∗” symbolizes convolution. Note

that this is a plot of frequency domain quantities.

On the other hand, if we assume that u(t) consists
of a single complex sinusoid i.e., u(t) = ejω0t, then we
know that y(t), having been passed through a linear, time-
invariant filter, will also be a complex sinusoid at the same

frequency. Only the phase and the magnitude will be al-
tered by Gp yielding y(t) = Gp(jω0)e

jω0t. The frequency
domain representation of this is depicted in Fig. 3. The sin-
gle, complex sinusoid Fourier transforms to a Dirac Delta
function, (a). Passing through Gp modifies the phase and
magnitude, (b). Sampling in time transforms to convo-
lution with a series of Delta functions in frequency, thus
replicating the impulses at ω0 + nωs where n is an inte-
ger and ωs is the sample frequency, (c). These samples
are filtered as they pass through the zero-order hold, again
modifying their gain and phase, (d).

The block marked, “Analyzer”, in Fig. 3 computes the
ratio of the cross-spectrum of its two inputs to the auto-
spectrum of one of them,

Heff (jω) ≡ F2(jω)F 1(jω)

F1(jω)F 1(jω)
(1)

where F 1(jω) is the complex conjugate of F1(jω), and
F1(jω) and F2(jω) are the two inputs of the analyzer. For
the system of Fig. 3, the single-frequency system input is
applied to the first input of the analyzer, and the output of
the zero-order hold is applied to the second input. Thus,
F1(jω) and F2(jω) are as plotted in (a) and (d), respec-
tively, of Fig. 3. The value of Heff (jω◦) is then4

Heff (jω◦) = Gp(jω◦)
1− e−jω◦T
jω◦T

(2)

From here, it is straightforward to extract Gp(jω0). In
this case, the effective transfer function Heff (jω◦) can be
thought of as the ratio between the output and input spec-
tral amplitudes at the excitation frequency, ω◦. It is not an
actual continuous-time transfer function because the action
of the sampler makes the overall system time-varying.

III. Theory
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Figure 4: Closed-loop sampled data system.

4Computation of Heff (jω) with the inputs described here involves
multiplication of two impulse-functions at ω = ω◦ in each of the
numerator and denominator of the fraction in Eq. (1). The product of
two co-incident impulses is not defined. However, if the unit impulse
at ω◦ is replaced by a narrow pulse of unity area, centered at ω =
ω◦, then the problem of computing Heff (jω◦) is well posed. The
situation presented here can be considered to be the limiting case
of an input-spectrum consisting of a very narrow unity-area pulse at
ω = ω◦.
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III.A Problem Statement

The closed-loop system is modelled as pictured in Fig. 4.
It is assumed that the closed-loop system is stable in the
sense that bounded inputs produce bounded outputs[9].
The system input, r(t), is assumed to be completely con-
trolled (and thus, known) by the experimenter. The only
system output that the experimenter can observe, however,
is the sampled output, y(t). The transfer function of the
LTI system under test is Gp(jω). The sample-hold is rep-
resented by a multiplier, which modulates the incoming
signal by an infinite train of unit-area impulses, spaced in
time by T , followed by a zero-order hold function, Gh(jω):

Gh(jω) ≡ 1− e−jωT
jω

. (3)

III.B Properties of Impulse-

Modulated Signals

Although it is not physically accessible in an actual sys-
tem, it is of interest to consider the signal immediately
after the multiplier, labeled ε∗(t) in Fig. 4. Using notation
developed in Franklin and Powell[9], ε∗(t) is defined,

ε∗(t) ≡
+∞∑
k=−∞

ε(t)δ(t − kT ) (4)

where δ(t) is the Dirac Delta function [10]. In this section,
it will be assumed that appending the “star” superscript,
“ ∗”, to any time-domain quantity implies modulation of
that quantity in the manner prescribed by (4), and that
appending a “star” to a frequency-domain quantity implies
that the Fourier transform of the appropriately modulated
corresponding time-domain quantity is to be taken. For
example, since E(jω), the Fourier transform of ε(t), is de-
fined,

E(jω) ≡
+∞∫
−∞

ε(t)e−jωtdt (5)

the convention of this section requires that

E∗(jω) =

+∞∫
−∞

ε∗(t)e−jωtdt . (6)

Using Eqs. (4) – (6), several properties of the “star”-ed
frequency-domain quantities can be derived [9].

E∗(jω) =
1

T

+∞∑
k=−∞

E[j(ω − kωs)] , (7)

where

ωs ≡
2π

T
. (8)

Equation (7) is depicted in Fig. 5, which shows the result
of modulation of a band-limited signal. The effect of the

0
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�
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Figure 5: Spectrum of a bandlimited signal modulated by an infinite

impulse train.

modulator is to replicate the signal spectrum at frequency
intervals of the sample frequency, ωs:

[G(jω) (E∗(jω))]∗ = (G∗(jω)) (E∗(jω)) . (9)

Equation (9) can be thought of as a distributive law for the
“star” operator, and can be proven via a straightforward
application of (7). Furthermore, E∗(jω) is periodic with
period ωs i.e.,

E∗[j(ω − nωs)] = E∗(jω); for n integer . (10)

Finally, the Fourier transform of ε∗(t) is related to the Z-
transform of the sampled signal, ε(kT ); k integer by

E∗(jω) = Ed(z) |z=ejωT , (11)

where

Ed(z) ≡
+∞∑
k=−∞

ε(kT )z−k . (12)

This fact is useful in interpreting the results of analyses
presented later in this section.

III.C System Analysis

From Fig. 4, two constraints relating Y (jω), E(jω), and
R(jω) can be derived:

E(jω) = Gp(jω) [R(jω)− Y (jω)] (13)

and
Y (jω) = Gh(jω) [E∗(jω)] . (14)

Substituting for Y (jω) from (14) into (13) and “star”-ing
both sides yields:

E∗(jω) = [Gp(jω)R(jω)]
∗ − [Gp(jω)Gh(jω) [E∗(jω)]]

∗
.

(15)
Equation (15) can be simplified by application of (9) and
then solved for E∗(jω):

E∗(jω) =
[Gp(jω)R(jω)]

∗

1 + [Gp(jω)Gh(jω)]
∗ . (16)

Finally, (14) can be substituted into (16) to give an ex-
pression relating Y (jω) and R(jω), the output and input,
respectively, of the closed-loop system:
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Y (jω) =
Gh(jω) [Gp(jω)R(jω)]∗

1 + [Gp(jω)Gh(jω)]∗
. (17)

Note that there is no way to manipulate Eq. (17) so as to
provide a ratio between Y (jω) and R(jω) (i.e., a transfer
function for the closed-loop system). This is impossible,
because the system is not LTI5.

III.D Special-Case Inputs

There are two special inputs for which the system re-
sponse can be easily determined. These two special cases
are examined in the sub-sections below in order to provide
further insight into the behavior of the system of Fig. 4.

III.D.1 Unit Pulse Input

For the first special case, the input, r1(t), will be assumed
to be a unit pulse of duration, T, which begins and ends at
sample-instants. The Fourier transform of such an input is

R1(jω) =
1− e−jωT

jω
(18)

It should be noted that the input spectrum, R1(jω), is
identical to the transfer function of the zero-order hold,
Gh(jω). Substituting R1(jω) for R(jω) in Eq. (16), and
recognizing that R1(jω) = Gh(jω) yields

E∗1 (jω) =
[Gp(jω)Gh(jω)]

∗

1 + [Gp(jω)Gh(jω)]
∗ (19)

where E1(jω) represents the value of E(jω) for the case
when R(jω) = R1(jω).

Now, as was stated in Eq. (11), the spectrum, E∗(jω) is
equal to the Z-transform of the sampled sequence, ε(kT ),
evaluated at z = e−jωT . Since the only elements between
ε(t) and y(t) in Fig. 4 are those that make up the sam-
ple/hold device, it is seen that

y(kT ) = ε(kT ); k integer. (20)

Thus, the right-hand side of Eq. (19) also represents the
Z-transform of the output-sequence, y1(kT ), evaluated at
z = e−jωT . Since the input, r1(t), is a unit pulse, the right-
hand side of Eq. (19) is actually the discrete-time transfer
function for the closed-loop system, defined for inputs that
change only at sample-instants.

III.D.2 Single-Frequency Input

The second special case to be considered here is that
of a single-frequency input of amplitude, Ro, and complex
frequency, s = jωo:

R2(jω) = Roδ(ω − ωo). (21)

For this special case, Eq. (17) can be manipulated to
provide a quantity that has many of the properties of a

5It is linear, but it is not time-invariant.

continuous-time transfer function for the closed-loop sys-
tem. Substituting R2(jω) for R(jω) in Eq. (17), using
Eq. (7), and considering only frequencies near ω = ωo,
gives

Y2(jω) =
Gp(jω)Gh(jω)

1 + [Gp(jω)Gh(jω)]
∗Ro

1

T
δ(ω − ωo); (22)

for | ω − ωo |< ωs. Equation (22) can be re-expressed as

Y2(jω) = Yoδ(ω − ωo); | ω − ωo |< ωs (23)

where

Yo ≡
Gp(jωo)Gh(jωo)

1 + [Gp(jωo)Gh(jωo)]
∗Ro

1

T
. (24)

The quantity, Yo, can be thought of as the Fourier com-
ponent of y2(t) at the excitation frequency, ωo. The effec-
tive transfer function, Heff (jω), was argued in Sec. II to
be equal to the ratio between the output and input spectral
amplitudes at the excitation frequency, ω◦. With the sys-
tem output and input being defined as Y (jω) and R(jω),
respectively,

Heff (jω) =
Yo

Ro
=

Gp(jω)Gh(jω)

1 + [Gp(jω)Gh(jω)]
∗ ·

1

T
. (25)

Note that Heff (jω) is unitless, with the units of Gh(jω)
cancelling those of the 1

T in Eq. (25).
The effective transfer function, Heff (jω), is significant

because it is a relatively easy quantity to measure for an
actual system, as was argued in Sec. II. It will be shown in
this section that such measurements can be used to deter-
mine Gp(jω), the continuous-time transfer function of the
LTI system under test.

A small amount of algebraic manipulation must be per-
formed in order to solve Eq. (25) for Gp(jω)Gh(jω) in
terms of Heff (jω). For convenience, the unitless quantity,
HΣ(jω), is defined.

HΣ(jω)

≡
+∞∑

k=−∞
Heff (j[ω − kωs]) (26)

=
+∞∑

k=−∞

Gp(j[ω − kωs])Gh(j[ω − kωs])
1 + [Gp(j[ω − kωs])Gh(j[ω − kωs])]∗

· 1

T
.

Equation (10) can be used to simplify the denominator of
(26), and Eq. (7) can be applied to the summation in the
numerator, yielding

HΣ(jω) =
[Gp(jω)Gh(jω)]

∗

1 + [Gp(jω)Gh(jω)]
∗ . (27)

Note that the expression for HΣ(jω) in Eq. (27) is exactly
equal to the right-hand side of Eq. (19). Thus, HΣ(jω) is
simply the discrete-time transfer function of the closed-loop
system, evaluated at z = ejωT .
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Equation (27) can be solved for [Gp(jω)Gh(jω)]
∗
, and

the result substituted into Eq. (25) to yield an expression
for [Gp(jω)Gh(jω)] in terms of Heff (jω) and HΣ(jω):

Gp(jω)Gh(jω) · 1

T
=

Heff (jω)

1−HΣ(jω)
. (28)

III.E Measurement Procedure

Given an infinite set of mea-
sured values for Heff (jω), ω ∈ [−∞,+∞], one could, in
principle, compute HΣ(jω) for all ω ∈ [−∞,+∞] via an
infinite summation, as prescribed in Eq. (7).

HΣ(jω) =
+∞∑
k=−∞

Heff [j(ω − kωs)] . (29)

In a practical situation, however, measurements can be
taken only at a limited number of points so that the sum-
mation of Eq. (29) must be truncated after a finite number
of terms. Thus, it is of interest to know how many terms
should be included (and indeed, whether the summation
converges at all!).

Since the closed-loop system is stable, the discrete-time
closed-loop transfer function must be finite for all z ∈ [z :
|z| = 1]. Thus, because HΣ(jω) is equal to the discrete-
time transfer function of the closed-loop system, evaluated
at z = ejωT , HΣ(jω) must be finite for all real ω.

The number of terms of Eq. (29) that must be included
to insure an accurate estimate of HΣ(jω) is difficult to de-
termine in general. A reasonable algorithm would be to
include enough terms so that the last few terms taken to-
gether add insignificantly to the summation. Given mea-
surements of Heff (jω) over a limited range of frequencies,
HΣ(jω) would thus be estimated by

HΣ(jω) '
+N∑
k=−N

Heff [j(ω − kωs)] . (30)

This estimated value for HΣ(jω) can be used in Eq. (28),
along with the measured values of Heff (jω), and the for-
mula for Gh(jω) in Eq. (3), to estimate Gp(jω).

IV. Experimental Verification

This section will report the design and results of an ex-
periment wherein the analysis of Sec. III was applied to a
test circuit of the topology depicted in Fig. 1. The mea-
surements reported in this section were all made using an
HP 3562A Dynamic Signal Analyzer. This instrument per-
forms frequency-domain, dynamic signal analysis spanning
the frequency span from 125 µHz to 100 KHz with a dy-
namic range greater than 80 dB [11].

The plant selected for the test circuit consists of an op-
amp realization of a two pole low pass filter whose transfer
function is well represented by the equation
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Figure 6: Unprocessed frequency response data from closed-loop sys-

tem.

Gp(jω) =
1

s2 + 2ζωns+ ω2
n

∣∣∣∣
s=jω

=
1

(ω2
n − ω2) + 2ζωnj

. (31)

The dimensionless damping ratio ζ, and the natural fre-
quency ωn are variable parameters of the circuit. The sam-
pler and the zero-order hold are implemented with an Ana-
log Devices AD585 analog sample hold circuit. The AD585
is a monolithic device with a 3.0 µS acquisition time (settle
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Figure 7: Estimated closed-loop unit pulse response (ĤΣ(jω)).
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Figure 8: Estimate of transfer function of open-loop plant con-

volved with zero-order hold and normalized by the sample period

(Ĝp(jω)Ĝh(jω) 1
T

).

to 0.01%) and a very low droop rate of 1.0 mV/mS. The
sample rate is controlled by an external function generator
and is an additional variable parameter of the experiment.
As shown in Fig. 1 the output of the sample-hold is inverted
and summed with the system’s input.

As discussed in Sec. II, the 3562A Dynamic Signal An-
alyzer has a mode of operation wherein it provides a si-
nusoidal excitation at a fixed frequency to a system under
test and measures the system’s response at that frequency.
In order to reduce the effects of noise, a number of such
measurements are averaged. The resulting ratio of the out-
put spectrum to the input spectrum is referred to as the
frequency response (at the frequency of the excitation). In
the experiments performed on the circuit in Fig. 1, the si-
nusoidal input was applied at r and the response measured
at y. For this circuit, the measurement performed results
in the quantity defined as the effective transfer function
Heff (jω), defined by Eq. (25).

IV.A Experimental Procedure

First, a primary frequency, ω◦, is chosen with ω◦ ∈[
−ωs2 ,

ωs
2

]
. The effective transfer function, Heff (jω) is

measured at ω = ω◦, along with 2N other frequencies spec-
ified by ω = ω◦ ± kωs, k = 1 . . .N . The effective transfer
functions are summed as prescribed by Eq. (30) to provide
an approximation to HΣ(jω◦);

ĤΣ(jω◦) ≡
N∑

k=−N
Heff (jω◦ − kωs) . (32)

HΣ(jω◦) is periodic in frequency with period, ωs. There-

fore, the approximation made above provides ĤΣ(jω) for
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Figure 9: Tranfer function of zero-order hold normalized by sample

period (Gh(jω) 1
T

).

ω = ω◦ − kωs, k = −N . . .N not just the primary fre-
quency. Eq. (28) can now be used to extract an estimate
of the product Gp(jω)Gh(jω) 1

T
for those same frequencies.

Finally,

Ĝp(jω) =
Heff (jω)

1− ĤΣ(jω)
· T

Gh(jω)
. (33)

This procedure can be repeated for an arbitrary number of
frequencies in the range ω◦ ∈

[
−ωs2 ,

ωs
2

]
.

IV.B Experimental Results

The results presented in this section show the use of the
algorithm to identify a lightly damped resonance at a fre-
quency approximately four times the Nyquist frequency
(ζ ∼ .05, ωn ∼ 5KHz, ωs ∼ 2.5KHz). Fig. 6 shows the
measurements of Heff (jω) for frequencies up to 20 KHz.

Fig. 7 is the spectrum, ĤΣ(jω), estimated by the sixteen
terms provided by the raw data. The estimated open-
loop transfer function Ĝp(jω)Ĝh(jω) 1

T extracted from the
closed-loop measurements is shown in Fig. 8. The spectrum
of Fig. 8 can be divided by the spectrum of the normalized
zero-order hold function calculated by the equation,

Gh(jω)
1

T
=

1− e−jωT
jωT

, (34)

and shown in Fig. 9, resulting in the estimated plant trans-
fer function Ĝp(jω). The plant transfer function derived as
described above is plotted along with a direct measurement
of the filter’s frequency response, Gp(jω), made with the
filter removed from the feedback loop in Fig. 10.
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Figure 10: Comparison of algorithm (dashed line) with open-loop

plant measurement. The vertical bars indicate the Nyquist frequency

of the closed-loop system.

V. Discussion

The agreement between the magnitude plots of Ĝp(jω)
and Gp(jω) in the upper portion of Fig. 10 is such that the
two curves are nearly indistinguishable. The same is true
of the phase-plots in the lower portion of that figure. A di-
rect measurement of Gp(jω), with the plant removed from
the sampled control-loop, is certainly much simpler to per-
form than the technique proposed in this paper. However,
for a situation in which the plant cannot be removed from
the sampled control-loop and for which the continuous-time
plant output is not available, the experimenter requiring
data on the high-frequency characteristics of the plant has
little choice but to follow the procedure of Sec. IV.

An example of such a situation is the head positioning
system for a Winchester disk drive using sectored servo-
code6. The output of the plant (in this case, the actuator
arm position) is available only at discrete times and the
system is linear only when it is under closed-loop control
near the center of a data track. If the experimenter has
continuous-time control of the system input, then the tech-
nique outlined here can be used to measure the continuous-
time open-loop transfer function of the actuator plus the
compensating electronics. In addition, the computed quan-
tity, ĤΣ(jω), gives the experimenter an estimate of the
discrete-time closed-loop transfer function of the sampled
control-loop, as discussed in Sec. III. The discrete-time
closed-loop transfer function provides useful information
about the stability of the closed-loop system.

6Often called embedded servo-code.
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