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Abstract

This paper describes the Customizable Coher-
ent Demodulation Algorithm, a servo demodu-
lator which provides dramatically improved per-
formance over the currently used servo demod-
ulation methods for disk drives. The demodu-
lation algorithm proposed here makes better use
of knowledge about the readback signal coming
from the disk to provide better noise immunity
and more immunity to other nonidealities in the
magnetic head response. The net result is a de-
modulated Position Error Signal (PES) which has
a much cleaner response.

1 Introduction

This paper describes the Customizable Coherent Demod-
ulation Algorithm, an algorithm for servo demodulation
in a disk drive that can significantly lower the Position
Sensing Noise (PSN)[1] that gets into the servo channel
of a disk drive. It does this by mixing the servo burst
signal with an idealized version of the dibit response and
integrating over a finite, integral number of periods of
the waveform. The algorithm differs from demodulation
schemes which use rectifiers (in almost all disk drives).
It is also different from the amplitude modulated (AM)
signal demodulation problem found in communications
systems. Typically, the latter are trying to extract a con-
tinuous signal rather than a burst of information that
yields a single number (as in the case of a servo demod-
ulator). The new algorithm also differs from a Matched
Filter demodulator because it allows potentially undesir-
able portions of the “noise-free signal” to be excluded
from the demodulation process.

The main idea is to use the frequency selectivity of
an algorithm similar to that used in measuring frequency
responses (the swept-sine demodulation algorithm[2]) to
achieve far better noise immunity than standard disk

drive servo demodulators. A logical question to ask is,
“Why has this not been done by others?” The reasons
are most likely that:

• such an algorithm is difficult to implement in analog
hardware, and

• there has not been a perceived need for such noise
immunity in the disk drive servo problem in the past.

However, recent results obtained using the PES Pareto
Method[3, 4, 5, 1] have shown that as disk drive servo
bandwidths are pushed higher and higher, the amplifica-
tion by the servo loop of Position Sensing Noise causes
major problems. Thus, any method that can reduce the
Position Sensing Noise before it gets into the servo loop
should be quite helpful in allowing the designer to increase
the servo bandwidth. Furthermore, the same level of dig-
ital hardware that is currently used in modern PRML
recording channels should be more than adequate to im-
plement this scheme in real time.
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Figure 1: Burst patterns and the resulting readback signals
when head is to the left of track center. The magnetic read-
back head is denoted by the rectangle with the H below.
Note that the readback signal is multiplexed in time so that
the signal obtained from the A Field is processed separately
from the signal obtained from the B Field.

The process of creating a position error signal from am-
plitude encoded signals on a disk drive may be described
as follows. Patterns of alternating magnetic polarity are
written on the disk surface with a particular frequency.
When the magnetic readback head passes over the burst



pattern, it reads back a signal that is (ideally) periodic
for the length of the burst. Nominally, the amplitude of
that signal is proportional to how much of the read head
is directly over the burst pattern at the time the signal is
produced.

To compose a Position Error Signal (PES), two pat-
terns, offset by one track width in the radial direction of
the disk and put down sequentially in the down track di-
rection of the disk, are used (Fig. 1). By offsetting these
signals, the difference between the amplitude demodu-
lated from the first field (A) and the second field (B),
can yield a measure of the radial position of the readback
head relative to the disk. Typical disk drives today may
have servo patterns on the disk which include 2, 4 or even
6 bursts of position information for a given track. For
simplicity of explanation, this paper will discuss only the
2 burst pattern. However, the algorithm applies equally
well to all of these cases.
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Figure 2: Peak Detection Servo Demodulator
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Figure 3: A Rectify and Integrate Servo Demodulator

In a typical disk drive, the servo demodulation is done
non-coherently. That is, a nonlinear element is used to
produce appropriate harmonics of the signal – rather than
mixing the readback signal with a signal which is coher-
ent with the carrier. The signal from the head is passed
through a full wave rectifier which computes the absolute
value of a signal. The rectifier produces a signal with a
large baseband component. For the vast majority of disk
drive servo channels, the rectified signal is processed in
one of two ways. The first method is Peak (or Envelope)
Detection (Fig. 2), in which a circuit is used which de-
tects and holds the peak amplitude value of the rectified
signal. The other common method is to integrate the
rectified signal (often called Area Detection). Filtering
may be added to improve the noise immunity of the Area
Detection demodulator (Fig. 3). If done over the right
time period, the integration causes all the Fourier com-
ponents to be averaged to zero except for the baseband

term. Broadband noise however, once passed through the
rectifier will have a bias, and thus will not average to zero.

The choice between Peak Detection and Area Detection
is typically based on the types of distortion that the servo
designer expects to encounter. Peak Detection typically
results in a simpler circuit design, and it is less prone to
certain signal problems (see Section 3.2). On the other
hand, integration is essentially an averaging operation, so
Area Detection will typically have greater noise immunity
than Peak Detection. Because Area Detection uses more
sophisticated circuitry than Peak Detection, Area Detec-
tion demodulators are often on separate chips from the
read channel (see [6], pages 6:21-6:22). Area Detectors
are still susceptible to other types of disturbances (see
Section 3.2). To deal with some of these issues, manufac-
turers of these demodulators have begun making hybrid
demodulators that contain features from both types of
detectors. However, these are still fundamentally non-
coherent detectors.
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Figure 4: Coherent Servo Demodulation with Optional Fil-
tering

A general block diagram for a coherent demodulator
that includes the possibility of pre-filtering the signals is
shown in Figure 4. While these diagrams seem pretty
straightforward, coherent servo demodulation for disk
drives has been attempted in only a few cases. Boutaghou
et. al. [7] describe a phase encoded position sensing sys-
tem. In their demodulator the modulated signal is dig-
itized and then mixed with sine and cosine signals sep-
arately. Each of these is summed (in a digital approxi-
mation to integration), and the ratio of the sums is com-
puted. Finally, the arctangent of the ratio gives the phase
encoded position error signal[7]. Another all-digital co-
herent demodulation scheme is proposed by Yada and
Takeda [8]. They apply a Maximum Likelihood scheme [9]
which mixes the sampled modulated signal with a sam-
pled version of the nominal noise-free pulse shape and
is considered the optimal solution for rejecting additive
white Gaussian noise (AWGN). This method makes use
of all the harmonics present in the ideal signal, not sim-
ply the first one. It is also worth noting that coherent
demodulation has been used in communications system
for years.



2 Description of the Algorithm

The method proposed below has several improvements
over the aforementioned ones. Like the work by Yada and
Takeda [8] and by Boutaghou et. al. [7], it uses a mixing
signal that is composed only of a weighted sum of the har-
monics of the dibit carrier frequency to achieve improved
filtering of broadband noise. Unlike those methods, this
algorithm may be implemented in analog, digital, or hy-
brid forms, while still maintaining the same essential algo-
rithm. Also, unlike those algorithms, the specific harmon-
ics used in the mixing signal can be adjusted to optimize
the immunity to both AWGN and nonlinear effects such
as the pulse asymmetry from a magneto-resistive (MR)
head.

Any of the above methods can be examined in the fre-
quency domain. The ideal dibit pattern (no noise or dis-
tortion) produces a periodic signal multiplied by a win-
dowing operation. One can analyze the periodic function
using Fourier series analysis [10].

The core idea of this new method can now be described
succinctly: The demodulating signal that is mixed with the
dibit signal is composed of a customizable set of harmon-
ics of the noise-free dibit signal.

By being able to choose which harmonics to use, we
can optimize the practical performance of the system in
the presence of a wide variety of nonidealities (signal dis-
tortions) which will be discussed below.

Furthermore, we will discuss implementation strategies
which make it easy for the designer to add or remove
harmonics at will.

Consider the readback signal from a single burst field
with no noise or distortions such as the A Field or the
B Field in Figure 1. This signal will begin at a zero
value, repeat at each new dibit, and terminate at a zero
value. The inverse of the period of a dibit, T , will be
the fundamental frequency at which the signal repeats,
f = 1

T
= ω

2π . In general, there areM periods of the signal
(M dibits) in the burst. We can represent the burst as a
product of a periodic signal and a window function. Thus,
we can analyze the burst by first analyzing the periodic
function.

In general, a periodic signal, r(t), can be analyzed using
Fourier series analysis. Due to the symmetry properties
of this particular signal and the fact that our signal has
a zero DC value and is an odd function, the calculation
can be reduced to

r(t) =
∞∑
n=1

Bn sin(nωt), n odd. (1)

We first consider the signal r(t) = R0 sinωt+n(t) where
n(t) is additive white Gaussian noise (AWGN). We mul-
tiply this by the mixing signal, m(t) = sinωt. We now
integrate this mixed signal for an integral number of pe-
riods of the signal, i.e., if T = 1

f
is the dibit period where

f = ω
2π , then

1

MT

∫ MT

0

m(t)r(t)dt =

R0

MT

∫ MT

0

(sinωt)2dt+
1

MT

∫ MT

0

(sinωt)n(t)dt. (2)

We now use a trigonometric identity and the fact that
a sinusoid which is integrated over an integral number of
periods integrates to zero. Furthermore, if T is the period
of a signal of frequency ω, then it is k periods of a signal
of frequency kω. Combining all of these we get

1

MT

∫ MT

0

m(t)r(t)dt =
R0

2
+

1

MT

∫ MT

0

(sinωt)n(t)dt.

(3)
Since n(t) is a random variable, we cannot integrate the
second term directly. However, we can take the expected
value. If we assume that n(t) is a zero mean additive
white Gaussian noise, then the expected value of the sec-
ond term on the right hand side of Equation 2 is 0, leaving
the mean dibit amplitude integral, R(t), as

R(t) = E

{
1

MT

∫ MT

0

m(t)r(t)dt

}
=
R0

2
. (4)

Thus, this mixing signal and integration scheme demod-
ulates the amplitude of the signal. Now let us consider
the more generalized case of a signal

r(t) = R0 (r1 sinωt+ r3 sin 3ωt+ r5 sin 5ωt) + n(t) (5)

and the mixing signal m1(t) = sinωt which yields,
through similar operations, R(t) = R0r1/2. Likewise,
we can demodulate the coefficient of the third harmonic
by picking m3(t) = sin 3ωt, yielding R(t) = R0r3/2,
and the fifth harmonic using m5(t) = sin 5ωt, yielding
R(t) = R0r5/2.

2.1 Useful Notes

It should be apparent from this that we can choose to
demodulate or ignore any individual harmonic. Further-
more, we can compose a single custom mixing signal that
contains the harmonics that we wish to demodulate and
ignores those that we wish to ignore. In particular – un-
like the Matched Filter approach – we can choose to ig-
nore some harmonics which may contain distortions pe-
culiar to certain classes of disk drives, but we are free
to demodulate any harmonics of the signal that increase
our signal to noise ratio. This is an extremely useful prop-
erty in demodulating disk drive servo position from bursts
written on the disk.

Two examples are illustrative here. In the first case
we consider r(t) as defined in Equation 5. In this case,
choosing

m(t) = r1 sinωt+ r3 sin 3ωt+ r5 sin 5ωt (6)



should maximize the signal to noise ratio. It is equivalent
to using a Matched Filter.

The second example comes from the use of Magneto-
Resistive (MR) readback heads as the signal transducer.
It is often the case that the readback signal is biased
on a response curve that behaves nonlinearly with the
amplitude of the input signal from the burst. Because
of the shape of this curve, the distortion is primarily a
quadratic term which adds zeroth and second harmonics
to the readback signal:

r(t) = R0 (r1 sinωt+ r3 sin 3ωt+ r5 sin 5ωt

+ k0 − k0 cos 2ωt) + n(t). (7)

The Matched Filter equivalent for this signal involves a
mixing signal

m(t) = r1 sinωt+ +r3 sin 3ωt+ r5 sin 5ωt

+k1 − k1 cos 2ωt (8)

which maximizes the demodulated signal with respect to
the additive white Gaussian noise, n(t), when k0 = k1.
However, this would also demodulate the terms caused by
the nonlinear distortion, which may result in a less useful
signal for position sensing. In particular, any change in
the real time value of k0 (as might happen with changing
track position or MR head bias current) would result in
a large error. On the other hand, using the mixing signal
defined in Equation 6 would completely avoid the terms
which behave nonlinearly with track position. This is the
type of flexibility that the algorithm gives us in building
a servo demodulator.

It should be noted that if the readback signal takes
a different shape, then a sum of cosine waves may also
be used in the mixing signal. Furthermore, if synchro-
nization becomes an issue, we can mix with sine and
cosine components separately and extract the amplitude
and phase of the burst signal.
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Figure 5: Digital circuit implementation of demodulator.
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Figure 7: Hybrid analog/digital circuit implementation of de-
modulator.

Depending upon the hardware available, the new algo-
rithm can be implemented as a fully digital (Figure 5),
fully analog (Figure 6), or hybrid implementation (Fig-
ure 7).

3 Experimental Results
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Figure 8: Ideal burst signal with no noise and no nonidealities.

The new algorithm has been successfully tested on real
burst data from a Hewlett-Packard disk drive, but the
results below more readily illustrate the benefits of the
algorithm. The data shown below show the results of sim-
ulations comparing the Rectify and Integrate method of
demodulation with two different implementations of the
new algorithm. One uses only the fundamental harmonic
of the burst signal and thus is called Sine Mixing. The
second case uses the first, third, and fifth harmonics of
the burst in the same proportions as they appear in the
nominal noise-free burst. This will be called the Custom
Harmonic method. A third method which is analogous to
the Matched Filter approach uses all the harmonics in the
nominal burst. As per the discussion in Section 2.1, we
can show how this can sometimes yield undesirable results
and thus may not be as good as the Custom Harmonic
method.

As a measure of goodness we choose the nomalized
standard deviation (σnor), i.e., the standard deviation
normalized by the true mean of amplitude which gives a
number analogous to a signal to noise ratio. When we
are generating a simulation, this true mean is the answer
that one would get in the ideal, noise-free case. This is
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Figure 9: Single burst signal with additive noise. The stan-
dard deviation of the additive noise, (σ), is given by σ = 0.5.
The units are normalized so that amplitude of the fundamen-
tal frequency of the burst is 1. The entire burst is then scaled
by a factor of 0.02 to better match the amplitude of bursts
measured in the lab.

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

Input Noise Sigma

N
or

m
al

iz
ed

 D
em

od
ul

at
io

n 
E

rr
or

 S
ig

m
a

Plots of Error Sigmas

Rectify and Integrate

Sine Mix

Custom Harmonic

Figure 10: Comparison of standard deviations of Sine Mix and
Custom Harmonic demodulation versus Rectify and Integrate
demodulation schemes. The data was taken as the input
noise on the burst was raised from σ = 0 to σ = 0.5 in the
normalized units of the simulation.

computed as:

σnor(x) =
E{(x− µ)2} 1

2

µ
. (9)

When a percentage is desired, the above number is mul-
tiplied by 100. In the case of measured bursts (where the
true mean was not available), care was taken to compute
the sample mean before passing the signal through any
biasing operations (such as a rectifier).

3.1 Immunity to Broadband Noise

The new demodulator has greater immunity to broadband
noise than the Rectify and Integrate method(Figure 10).
(Note that the Rectify and Integrate method has bet-
ter noise immunity than a standard Peak Detection
scheme[6].) In current drives a typical input noise level
would correspond to the abscissa value of 0.1 in Figure 10.

At this level, the new demodulator has roughly a factor
of 2 improvement in noise immunity. However, it is im-
portant to note that as the input noise level goes up, the
advantage of the new demodulator increases dramatically.

3.2 Immunity to Signal Nonidealities
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Figure 11: A noise-free burst with a baseline shift starting at
the third dibit.
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Figure 12: Comparison of standard deviations of Sine Mix and
Custom Harmonic demodulation versus Rectify and Integrate
demodulation schemes. The data was taken as the baseline
shift starting at the third dibit was raised from 0 to 1.0 in the
normalized units of the simulation.

This section addresses the addition of signal distortions
or nonidealities. In order to have a common basis for
comparison, several standards were maintained:

• A 9 dibit burst was always used to maintain consis-
tency in the results and consistency with the disk
drives from which measured data was obtained.

• No random noise was added in simulations where the
nonidealities were being added.

• The nonidealities always were introduced at the start
of the third dibit. This is for consistency and clarity
of exposition.
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Figure 13: A noise-free burst with a thermal asperity starting
at the third dibit.

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normailized Thermal Asperity Amplitude

N
or

m
al

iz
ed

 D
em

od
ul

at
io

n 
E

rr
or

 S
ig

m
a

Plots of Error Sigmas

Rectify and Integrate

Sine Mix

Custom Harmonic

Thermal Asperity

Figure 14: Comparison of standard deviations of Sine Mix and
Custom Harmonic demodulation versus Rectify and Integrate
demodulation schemes. The data was taken as the thermal
asperity starting at the third dibit was raised from 0 to 1.0 in
the normalized units of the simulation.

• The nonidealities were scaled relative to the ampli-
tude of the fundamental frequency of the servo burst.

Baseline Shift is a sudden increase in the offset of the
burst (Figure 11). It creates a large effect on the Rectify
and Integrate demodulator, but virtually none on the new
demodulator (Figure 12).

A Thermal Asperity causes a rapid increase and
then gradual decrease in the response from the head (Fig-
ure 13). It creates a large effect on the Rectify and In-
tegrate demodulator, but virtually none on the new de-
modulator (Figure 14).

With Baseline Popping, the nominal quiescent value
of the a dibit pulse returns to a nonzero value (Figure 15).
This causes some problems for the Rectify and Integrate
detector, but none for the new demodulator. Unfortu-
nately, this does not lend itself well to being plotted in
the σ value plots, so only one example is given.

The Second Harmonic Distortion discussed in Sec-
tion 2.1 is shown in Figure 16. It results in an asymmetric
pulse shape. When the amount of second harmonic dis-
tortion deviates from the nominal level as shown in Fig-
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Figure 15: A noise-free burst with baseline popping starting
at the third dibit.
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Figure 16: A noise-free burst with a nominal second har-
monic distortion scaled to 0.3 of the fundamental frequency
amplitude.

ure 17, then both the Rectify and Integrate and Matched
Filter methods exhibit dramatic error levels. This is due
to the fact that since the Matched Filter demodulates
frequencies that include the second harmonic distortion
it demodulates the erroneous component as well, causing
an error. Note that since neither the Sine Mix nor the
Custom Harmonic schemes demodulate these frequencies,
they are immune to any second harmonic distortion as
shown in Figure 18.

4 Discussion

Note that in all cases, the Sine Mix demodulator and
the Custom Harmonic demodulator provide dramatic im-
provement over standard Rectify and Integrate. The Cus-
tom Harmonic demodulator also always does better than
the Sine Mix demodulator, but the difference is small.
The choice of Custom Harmonic versus Sine Mix is really
one of slightly improved noise immunity versus poten-
tially greater complexity. Note, however, that two of the
implementation methods simply store the mixing signal
in ROM and thus there is no added complexity in imple-
menting the Custom Harmonic version over the Sine Mix
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Figure 17: A noise-free burst with a nominal second har-
monic distortion scaled to 0.3 of the fundamental frequency
amplitude. An additional second harmonic distortion term of
0.6 of the fundamental frequency amplitude is added in.
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Figure 18: Comparison of standard deviations of Sine Mix,
Custom Harmonic, and Matched Filter demodulation ver-
sus Rectify and Integrate demodulation schemes. To the
noise-free burst withe the nominal second harmonic distor-
tion scaled to 0.3 of the fundamental frequency amplitude
was added additional second harmonic distortion terms scaled
from 0 to 1.0 of the fundamental frequency amplitude is
added in.

version. The improved noise immunity is essentially free.

Note that the Custom Harmonic method also gives
more freedom to avoid such MR head phenomena as sec-
ond harmonic distortion.

In summary, for the cost of some extra silicon in the
servo demodulator, we can achieve dramatically improved
immunity to both broadband noise and certain read-
back head phenomena which currently plague conven-
tional servo demodulators. Furthermore, by removing the
susceptibility to second harmonic distortion, the fact that
the MR head produces an asymmetric pulse shape is ir-
relevant. The servo channel will only see the symmetric
portion of the signal. This can save us the trouble of
trying to remove this asymmetry in other ways (such as
creating a dual stripe MR head or a dual stripe Giant
Magneto-Resistive (GMR) or Colossal Magneto-Resistive
(CMR) head).

Finally, while this paper has focused on applying the
Customizable Coherent Demodulation Algorithm to disk
drive servo loops, it should be usable in other real world
systems.

Readers interested in a more detailed version of
this paper are directed to the author’s web page at
http://www.hpl.hp.com/personal/Danny Abramovitch/pubs/.
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