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Abstract— In general, the design of phase-lock loops
has been done by a combination of linear analysis, phase
plane plots, rule of thumb, and simulation. Very few
analytical tools have been used to determine the stabil-
ity of the nonlinear models used for these devices. A
method from the control literature known as Lyapunov
redesign[1] has recently been used to design a third or-
der phase-lock loop whose nonlinear model is guaranteed
to be stable [2]. In this paper, this technique is demon-
strated to be an effective stability analysis and design
technique for many analog phase-lock loops. The ability
of loops designed using these techniques to track a phase
step is also proven.

I. Introduction
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Figure 1: Phase Lock Loop

Figure 2: New Model of PLL

Analog phase-lock loops have been around for many
years as noted in [3] and [4]. While the field is considered
quite mature and there have been many books written
on the subject e.g., [5, 6, 7], very little has been said
in the commonly available literature about the stability
analysis of the nonlinear model of the analog phase-lock
loop. There have been a few examples of authors using
Lyapunov analysis on PLLs [8, 9, 10], but in general, the
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analysis and design of phase-lock loops has been done by
a combination of linear analysis, phase plane plots, rule
of thumb, and simulation[3, 4, 5, 6, 7]. A method from
the control literature known as Lyapunov redesign[1] has
recently been used to design a third order phase-lock
loop whose nonlinear model is guaranteed to be stable
[2]. In this paper, this technique is demonstrated to be
an effective stability analysis and design technique for
many analog phase-lock loops.

Typically, stability analysis deals with noise free mod-
els. This will be the case here. While practical analy-
sis and simulation of a real system must include some
noise model, a prerequisite for such analysis is either
the knowledge or the assumption that the loop is stable.
This paper will attempt to provide the former. Further-
more, stability analysis deals with the homogeneous (no
input) differential equation of the system. This will be
useful here, as it is often convenient to perform block
diagram manipulations to give a set of states for which
it is easy to extract stability results. Finally, stability
is an asymptotic property. Knowing that a system is
stable or that it tracks a step input does not in itself
yield performance results. The purpose of this paper is
to provide a design method for analog PLLs that will
guarantee stability and tracking.

The structure of this paper is as follows. Section II
will review the model of an analog PLL. Section IIT will
introduce the necessary definitions and theorems for do-
ing analysis. The actual analysis as applied to phase-
lock loops will be done in Section IV.

II. The Model of an Analog PLL

The block diagram of an analog phase-lock loop
(PLL)! is shown in Figure 1. While this block diagram
is close to the actual implementation of the PLL, several
steps are normally taken to facilitate analysis. Using the
familiar trigonometric identity in terms of the PLL:

2sin(wit + 0) cos(wat + @) =

sin((w1 +w2)t + 0 + @) + sin((w1 — w2)t + 60 — @)(1)

IDigital phase-lock loops are denoted by DPLL.



and then making two fundamental assumptions leads
to the commonly used model of the analog PLL. These
assumptions are:

1. The first term in (1) is attenuated by the low pass
filter.

2. w1 & wa, so that the difference can be incorporated
into ¢. This means that the VCO can be modeled
as an integrator.

Making these assumptions leads to the PLL model
shown in Figure 2.

The problem is that this is still a nonlinear system,
and as such is in general difficult to analyze. The typical
methods of analysis include:

1. Linearization: For ¢ small and slowly varying
siny ~ 1, cosy ~ 1, and ¢2 ~ 0.

While this is useful for studying loops that are near
lock, it does not help for analyzing the loop when
1 is large.

2. Phase plane portraits. The disadvantage to this
is that phase plane portraits can only completely
describe first and second order systems.

3. Simulation.

In this paper, the second method of Lyapunov will
be proposed as a method for analyzing the stability and
tracking of the nonlinear phase lock loop model. It will
be shown that a fairly regular procedure known as Lya-
punov redesign[1], which is quite well known in the area
nonlinear control theory is quite applicable to solving
this class of problems.

ITI. Lyapunov Stability

The second method of Lyapunov([ll] is commonly
used in stability analysis of nonlinear differential equa-
tions because it does not require the solution to the dif-
ferential equation. A very intuitive discussion of this can
be found in Ogata [12]. The second method of Lyapunov
is based on the generalized energy in the system. If an
energy like function of the system state (i.e., a positive
definite function of the state which is nonvanishing as
long as the state is nonzero) is found which is constantly
decreasing, then the system is asymptotically stable. A
general form of a vector differential equation is:

& = f(z,t) where z,% € R". (2)
An equilibrium state is any state such that
f(@e, ) =0. 3)

Usually, a transformation is made so that the origin of
state space is an equilibrium state i.e.,

f(0,8) =0. (4)

Theorem 1 (LaSalle’s Theorem) [11] For the sys-
tem defined by Equation 2, suppose there exists a posi-
tive definite scalar function of x, V(x), such that V(x)
is negative semi-definite i.e.,

V(z) > 0, Viz) < 0 Vi # 0
V() = 0, V() = 0 z=0.
Suppose also that the only solution of & = flz,t),

V(z)=01isx(t) =0 for allt > 0. Then & = f(x,t) is
globally asymptotically stable.

()

This theorem will prove to be quite useful in the next
section. In general V' is known as a Lyapunov function if
it satisfies either LaSalle’s Theorem or Lyapunov’s Main
Stability Theorem [11]. It turns out in practice that
Theorem 1 is often easier to satisfy. Another definition
that is necessary is that of a sector nonlinearity.

Definition 1 (Sector Nonlinearity) The
@(-,-) is said to belong to sector [, 3] if

ay® < yo(t,y) < By* Vy € R, Vt > 0.

function

In other words, a sector nonlinearity would belong to
sector [a, G] if it fell in the dotted region of Figure 3.

P
~ Sector [a, B]

Figure 3: Sector nonlinearity: ¢ € [a, 5]

Lyapunov redesign starts with a candidate Lyapunov
function. The function is parameterized by the design
parameters of the system in question. These parameters
are then chosen so that the candidate Lyapunov function
meets the requirements of either Lyapunov’s Theorem
or LaSalle’s Theorem. In this paper, that function will
have the form

= ’ g)aoc JJTJT
V= [ fo)o+aTp (6)

which was introduced by LaSalle and Lefschetz[13]. P
is a positive definite matrix, x is some portion of the
system state, and f(-) is a nonlinearity which lies in
sector [0,00]. That is to say

0 < f(o)o. (7)
The key is to satisfy conditions such that V' > 0, but
V = f(2)z+2"Pi<0. (8)

In the case of the analog PLL, f(c) = sin(o) and it is
fairly easy to see that this is in sector [0, 00| for —m <
o < 7. Also, in the cases when P is a 2 X 2 matrix (third
order PLLs) the conditions for P > 0 are

p11 >0, p1ip2e > Piy, = po2 > 0. 9)



IV. Nonlinear Analysis of PLLs

In this section, the above Lyapunov analysis tech-
niques are applied to a variety of phase-lock loops. The
structure of this section will be a series of examples of
second and third order phase-lock loops, some with zeros
and some without. In each case, the differential equa-
tions and a corresponding block diagram will be shown.
A Lyapunov function is chosen which is parameterized
by the parameters of the analog phase-lock loop. Con-
ditions for stability of the PLL are then determined in
terms of the loop parameters. Finally, using these same
loop parameters, the tracking of step inputs to the PLL
is proven.

IV.A Second Order PLL with No Zeros

Figure 4: Second Order Phase-Lock Loop with No Zeros
A second order PLL with no zeros is shown in Fig-

ure 4. The differential equations corresponding to this
loop with no external inputs (f =y = 0) are:
2z = K,siny — a;z and (10)
= —K,(x+7) =Kz, (11)

where ¢ = 6 — ¢ = —¢. Choose

v 1
V= / sin(o)do + §px2, p > 0. (12)
0

The term under the integral is positive for —m < ¢ < 7
and this fact will be used quite often. Then

V = sin(¢)y) + pri (13)
= pr(Kpsiny — arx) +sinyp(—Kyxz)  (14)
= —a1pz? + sin(Y)z(pK, — K,). (15)

In order to invoke LaSalle’s Theorem, we must have
Vi,z) > 0with V =0<«<= ¢ =2 =0and V < 0.
Assuming ¢ € (—m, ) the condition for V' > 0 is

p > 0. (16)
The conditions that guarantee V < 0 are:

a1p > 0, and (17)
pK, — K, =0. (18)

For K,, K, > 0 it is always possible to satisfy Condi-
tions 18 and 16 by picking

p=—. (19)

Condition 17 is easy to satisfy by picking

a; >0, (20)
which leaves
v 1K
V= /0 sin(o)do + §FZJ;2 and (21)
. K
V= —alexQ <0. (22)

Finally, the only values for 1 and z which results in
V=it=y=0isypy=2=0.

IV.A.1 Tracking a Phase Step

The second order PLL with no zeros designed above is
stable. It will now be shown that this loop can also track
a step input. The equations for the PLL corresponding
to Figure 4 with an input at 6 are:

& = Kpsiny — a1z, (23)
Y =0—¢, and (24)
"L:é_Kv(m“‘V):é_KUJL (25)

As above, choose the Lyapunov function

v 1K
V= /0 sin(o)do + §F:)m2, (26)

where the choice of p from Equation (19) has as been
made and a; > 0. Then

V =sin(¥) — a %.132, (27)

p

where the second term is the same as the no input case,
Equation (22), and the first term corresponds to exci-
tation caused by the input to §. Now say 6 is a step.
Then )

0 = 006(t), (28)

where §(t) is the impulse function. Integrating (27) for-
ward in time and noting that sin(07) = sin 6y yields
(due to the sifting property of the impulse function):

V() = / i sin(w)édt—al% Ot 22dt (29

K t
= 0ysinfy — a3 — 22dt (30)
Ky, Jo-



The first term of (30) is a positive constant for —m <
0o < m. The second term is a negative number which
will grow without bound unless = goes to 0. If = did
not converge to 0, then V(¢) would eventually become
negative which is impossible since V() was chosen to be
a positive definite function. Thus, z must converge to
0. As in the discussion of stability, the only value of 1
for which z can remain identically 0 is ¥ = 0, thus the
loop must track a phase step input.

IV.B Second Order PLL with One Zero
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Figure 5: Second Order Phase-Lock Loop with 1 Zero

Figure 7: Drawing out the state variables

A second order PLL with one zero is shown in Fig-
ure 5. In this case, the analysis is simplified a bit if
the loop is redrawn as in Figure 6. These two loops are
equivalent from the point of view of closed-loop stabil-
ity. The second configuration merely makes it possible
to draw some new state variables out of the block from
T to ¢ as shown in Figure 7. The differential equa-
tions corresponding to this loop with no external inputs
(0 =~ =0) are:

Uy = Kybiz (31)
¢=Kyz+y (32)
&= Kpsiny — a1z (33)
¢ = K,K,siny + K,biz — K,a1x (34)
Y = —K,K,sing) — K,byz + Kyayz (35)
where ¢ = 6 — ¢ = —¢. Choose
¥ 1
V= / sin(o)do + Epa;Q, p > 0. (36)
0

Using analysis entirely analogous to that in Section IV.A
and choosing K, K, > 0 the conditions for satisfying

LaSalle’s Theorem are:

K,(b1 —a1)

p= K, and (37)

b1 > a1 > 0. (38)

This leaves

¥ —_
V= / sin(o)do + 1%al):ﬁ and (39)
0 2 Kp

Kv(bl _al)

V = —-K,K [sinzb]2 —ay
v p Kp

x? < 0. (40)

Finally, the only values for ¢ and z which results in
V=t=¢v=0isy=x=0.

It is interesting to note that if we chose by = a1 then
the pole and zero from z to ¢ would cancel leaving x = ¢.
That is to say, the model can be reduced to that of a
first order analog phase-lock loop. For this new model,
this same Lyapunov function works, except that p = 0
and thus

¥
V= in(o)do and
/0 sin(o)do an (41)
V = —K,K, [siny]” <0. (42)

IV.B.1 Tracking a Phase Step

It turns out that a completely analogous result for
tracking holds for the second order PLL with one zero
as was shown for the second order PLL with no zeros.
As above, choose V from (36) subject to (37) and (38)
to yield

Ky(b1 —a1) ,
K, (43)

V =sin()d — K, K, [sin¢)]® — ay
where the last two terms are the same as the no input
case, Equation (40), and the first term corresponds to
excitation caused by the input to 0. As before 6 is a step,
so integrating (43) forward in time yields (see (29)—(30)
for details):

t [sin®]? dt

0-

K,(by — K
—al(;{ipal)/ z2dt (44)

V(t) = 60psinby — K, K,

The first term of (44) is a positive constant for —m <
0y < mw. The latter terms are negative numbers which
will grow without bound unless ¥ and z go to 0. As
before, we reach the conclusion that ¥ and x must go
to 0 to preserve the positive definiteness of V' and thus
this loop tracks a step input to 6.



Figure 8: Third Order Phase-Lock Loop with No Zeros. Dashed
line is velocity feedback which does not correspond to a PLL.

IV.C Third Order PLL with No Zeros

A third order phase-lock loop with no zeros turns
out to be unstable, even in the linearized (small signal)
model. It turns out that the feedback structure can be
stabilized by adding what is known in the controls liter-
ature as velocity feedback? as shown in with the dashed
line in Figure 8. While this is useful from a theoretical
point of view and in fact a Lyapunov function can be
found for this system, this model no longer corresponds
to a phase-lock loop and will not be pursued here.

IV.D Third Order PLL with One Zero
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Figure 9: Third Order Phase-Lock Loop with 1 Zero

1 = Ky (s+b1) ®
sta1 2

Figure 11: Drawing out the state variables
A third order analog PLL with one zero is shown in
Figure 9. Again, for the sake of stability and tracking
analysis it is convenient to redraw the loop as in Fig-
ure 10. From here the necessary state variables can be
drawn out as in Figure 11. The state equations corre-
sponding to Figures 10 and 11 are:

&= Kpsiny — a1z, (45)
y = Kybix, and (46)
=—¢p=-K,zz—y. (47)

2In a mechanical analog of the analog PLL, ¢ would correspond
to the position and z would correspond to the velocity.

Choose

v 1 T
V=|[ sinfo)do+=[2z y]| P , (48)
o 2 y

where P is a symmetric, positive definite, 2 x 2 ma-
trix. In order to invoke LaSalle’s Theorem, we must
have V(¢,z,y) >0 with V=0 <<=+ =2 =y =0 and
V < 0. Assuming ¢ € (—7,7) we can satisfy (9) with

Ky 1
ro| B ® ] | (49
Ky, KpKu.b1
ai > by > 0, and (50)
K,, K, > 0. (51)
Thus, V > 0 and
) K,
V= —332 |:— (Cll — bl):| S 0. (52)
Ky

Finally, the only place that V and (53) — (55) can vanish
is for z = y = ¢ = ¢ = 0, so using LaSalle’s Theorem
proves stability.

IV.E Third Order PLL with Two Zeros
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Figure 12: Third Order Phase-Lock Loop with 2 Zeros
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Figure 14: Drawing out the state variables

The block diagram of the PLL that was analyzed in
full [2] is shown in Figure 12. The results will be sum-
marized here. This is a third order PLL with two zeros.
Note that an extra gain, K, is involve in this model, but
for consistency with the previous examples this could
be set to 1 without loss of generality. For the sake of
stability and tracking analysis it is convenient to redraw



the loop as in Figure 13. From here the necessary state
variables can be drawn out as in Figure 14. The state
equations corresponding to Figures 13 and 14 are:

2= Kpsiny — a1z, (53)
y = Kbz, and (54)
Y= —K,KK,siny — K,K(by — a1)z — K,y. (55)
Choose
v 1 z
V:/ sin(@)do+~[z y] P| 2|, (56)
0 2 y

where P is a symmetric, positive definite, 2 x 2 ma-
trix. In order to invoke LaSalle’s Theorem, we must
have V(¢,y,2) > 0 with V =0<= ¢ =y =2 =0 and
V < 0. Assuming 1 € (—m,7) we can satisfy satisfy (9)
and guarantee V > 0 and Vv < 0 with:

K”K(bl _ al) Ky
P=| g &b |, 67
K, K,Kbo
K, K
K,KK, >0 <+= ;{’ >0, K, #0 (58)
p
b1 > a1, (b1, a; same sign) and (59)
by — (bl — al)al < 0. (60)

It is convenient to choose both by and a; > 0 since this
corresponds to a stable filter. Also, it is convenient to
choose K, K,, and K positive, leaving

. K.K
V = —sin? ¢ [Ky KKp) + 22 KL(bo — (b1 —a1)a1)| <0.

P
. (61)
Finally, the only place that V and (45) — (47) can vanish
is for x = y = ¢ = ¢ = 0, so using LaSalle’s Theorem
proves stability.

IV.F Tracking for Third Order Loops

The tracking analysis of a step input for the third
order loops is completely analogous to that of the second
order loops and will be omitted here for brevity.

V. Discussion

It is interesting to note that the conditions for stablil-
ity of the nonlinear second order models i.e., K, K, > 0,
ay > 0, and (in the case of a zero) b; > a; correspond
to the linear design rules. First K,K, > 0 guarantees
negative feedback for the loop. The conditions on a;
and by (if present) correspond to the filter being a sta-
ble, low-pass filter. As the presence of a stable, low-pass
filter is always assumed in the design of a PLL, this im-
plies that all second order PLLs that are designed using
the standard assumption in Section II are stable. Thus,
the theory here reinforces what has been empirically ob-
served by many designers over the years.

V1. Conclusions

This paper has endeavored to approach the problem of
stability and tracking analysis for the nonlinear model of
analog phase-lock loops in a novel manner. The theory
used, Lyapunov analysis, and the particular method for
design, Lyapunov redesign, are not new to control the-
ory. Only their application to analog phase-lock loops
is new. This method appears to be quite useful for this
problem and its applicability seems to be quite broad.
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