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Abstract– This paper describes studies done at HP Labs on
the actuator pivot bearing nonlinearity of a small disk drive. The
nonlinear frictional behavior of the pivot bearing varies with ac-
tuator position, from drive to drive, and with time and tempera-
ture. This nonlinear behavior has made the traditional linear disk
drive models inadequate. Part I of the paper shows how the swept-
sine/describing function method was used to develop a nonlinear
model of the pivot. This model departs from the classical friction
models, but does a good job of matching laboratory frequency do-
main measurements. Part II of this paper presents several addi-
tional models and describes time domain comparisons between the
laboratory measurements and the model simulations.

1. Introduction

Friction in the actuator pivot of a small disk drive limits the
low-frequency gain. This problem is much more pronounced in
a small drive due to its small actuator inertia when compared
with that of larger disk drives. Furthermore, such a small drive
is designed for the mobile environment and thus will have to
tolerate much more severe shock and vibration than typical in
traditional disk drives. This translates to a requirement for
additional gain at relatively low frequencies, where the shock
and vibration play a more significant role.

The nonlinear frictional behavior of the pivot bearing varies
with actuator position, from drive to drive, and with time
and temperature. This nonlinear behavior has made the tra-
ditional linear disk drive models inadequate. However, it has
been possible to make both time and frequency domain mea-
surements both in the laboratory and in a nonlinear modeling
package, namely Simulink[1]. In the frequency domain, this
link was achieved by noting that a swept sine measurement –
such as those taken with the HP 3562(3)A Control Systems
Analyzer – measures the input/output describing function of
the nonlinear system. If this measurement is exactly mim-
icked in the modeling package then a series of nonlinear mod-
els can be tested until the correct one is found. The search for
the correct nonlinear model is continued until both time and
frequency domains are matched between the model and the
laboratory[2]. This nonlinear characterization should pave the
way for a nonlinear adaptive controller that compensates for
the effect of the nonlinearity. This paper will describe a small
disk drive actuator pivot nonlinearity and how it is modeled
using the swept-sine/describing function (SWS-DF) technique.

2. An Instrument Simulation

The target products for the high track density control algo-
rithms are future disk drives. The best chance at understand-
ing how these algorithms would work is by having a detailed
model of the system. In order to verify that the models are
based in reality, it is useful to verify them against existing ver-
sions of disk drives. Typically for a nonlinear system, measure-
ments are done both in the time and the frequency domains.
Part I of this paper deals with the frequency domain only. For
reasons stated in [2], the swept-sine (also called sine-dwell)
method[3, 4] was chosen over FFT based methods.

The plant frequency response was measured using the
HP3562(3)A’s swept-sine mode, the simulation implementa-
tion of which was developed by the authors in [2]. The swept-
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sine method essentially computes the describing function of a
nonlinear system. This is important for several reasons.

• It allows the user to characterize system nonlinearities.

• It allows the user to verify a nonlinear model against mea-
surements of the laboratory system.

• It allows the user to predict effects of a nonlinearity on
the overall control loop using a verified model.

3. The Disk Drive Actuator Pivot Nonlinearity
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Figure 1: The Actuator Pivot Nonlinearity

The effects of the disk drive actuator pivot nonlinearity are
shown in Figure 1. The dashed line shows an idealized open
loop frequency response. The solid line shows a measurement
made on a small drive. As there is nothing in the arm struc-
ture that should give this type of a resonant behavior at low
frequency, one might surmise that this “low frequency pole” is
actually due to some nonlinear behavior in the pivot bearing
i.e., friction. (Further measurements have verified this.)

One of the advantages of a block diagram based model is
that it allows us to rapidly alter the model to match a new
type of measurement. The laboratory setup was altered in or-
der to focus on the pivot itself. Rather than using the drive
power amplifier, voltage was applied directly across the actu-
ator coils. Rather than reading a relative position from servo
marks on the disk, the read/write head position was measured
with a Laser Doppler Vibrometer (LDV). The simplified model
that corresponds to this laboratory setup is shown in Figure 4.
The objective was to find both the form of the feedback and
the parameters of the nonlinear model such that the model’s
frequency response would match the measured system’s fre-
quency response. One of the key features of an acceptable
model is that the model “measurements” must change with
the input amplitude just as the laboratory measurements do.

3.1 Preload Velocity Feedback

A natural starting point for a nonlinear model is the so
called preload nonlinearity feeding back from the velocity. The
preload nonlinearity is comprised of Coulomb friction plus vis-
cous damping[5]. Figure 2 shows a comparison between the
laboratory measurement of the mechanical transfer function
and the model simulation result1. While the match appears

1The simulated frequency response curve shown is not smooth
at low frequencies because noise was injected into the model. This
noise was removed in later models so averaging need not be done.
This greatly reduces simulation time.
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Figure 2: Matching the model: The arm mechanics model in-
cludes a single preload as its nonlinear component. Solid line:
lab measurement, Dashed line: simulation measurement. The
mismatch points to the need for a position feedback term.

good at frequencies above 100 Hz, the match deteriorates be-
low this and the slope of the model frequency response (on av-
erage) appears closer to a 20 dB/decade slope than the nearly
flat line of the laboratory measurement. The reason for this is
clear if we replace the nonlinear element with simply viscous
(linear) damping. In that case, the transfer function is given
by

X(s)

R(s)
=

1

J

1

s(s+ a)
, where a is the viscosity (1)

which has a 20 dB/decade slope at low frequency. In order to
get the 0 dB/decade behavior seen in the lab measurement, it
is necessary to add a position feedback term.

3.2 The Two Preload Model
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Figure 3: Two “preload” model of pivot nonlinearity. Although
this allows for some interesting qualitative predictions, model
measurements based upon this do not match laboratory mea-
surements.

A good starting point for a model that contains both posi-
tion and velocity feedback nonlinearities is shown in Figure 3.
A linear position dependence is not sufficient because there
will be no variation in low-frequency gain as input amplitude
varies. The two preload model is simple enough that some
describing function analysis can still be done qualitatively.

An input signal is injected at r and measurements of a, v,
and/or x are possible. Describing function analysis assumes
that the system can be approximated as operating around the
single sinusoid injected into the reference. In this case, the ref-
erence sinusoid is r(t) and the signal that the other responses
will be defined in reference to will be that of the velocity, v(t).

r(t) = R sin(ωt), (2)

v(t) = Av cos(ωt), (3)

x(t) = Ax sin(ωt), (4)

a(t) = −Aa sin(ωt). (5)

where the amplitudes can be given as

Ax =
Av

ω
, (6)

Av = Av, (7)

Aa = ωAv. (8)

There are two nonlinearities in the system. The nonlinear
velocity feedback is defined as

NL1 = Kcsgn(v) +Kvv, (9)

where Kc is the Coulomb level and Kv is the viscosity. Its
describing function is given by

DF1 =
4Kc

πAv
+Kvv. (10)

Likewise the nonlinear position feedback is defined as

NL2 = Dsgn(x) +mx, (11)

where m is the linear spring term and D is the signum spring
level. Its describing function is similarly

DF2 =
4D

πAx
+mx (12)

Under the assumption that the signals are mostly sinusoidal,
it is possible to combine these describing functions with the
linear portion of the system to obtain:

X(s)

R(s)
=

1

J
· 1

s2 +
(

4Kc
πAvJ

+ Kv
J

)
s+
(

4D
πAxJ

+ m
J

) (13)

This then is a “describing function” model of the above system
with the two preload nonlinearities. This model can be used
to qualitatively predict some behaviors of the system.

One of the features of swept-sine measurements on the HP
3562(3)A is the ability to have the input signal amplitude ad-
justed during the sweep so that the amplitude of one of the
measured output signals is kept constant. This is known as
autogaining. In the laboratory instrument, it is sometimes
difficult to obtain data in this fashion due to the effects of the
nonlinear behavior on the autogaining algorithm. However,
the same concept is fairly useful in analyzing the behavior of
this model. For example if the amplitude Av is controlled as
the frequency is swept, then the amplitude of Ax can also be
determined from the relationship Ax = Av

ω
= jAv

s
. In this

case, the transfer function from R(s) to X(s) is given by:

X(s)

R(s)
=

1

J
· 1

s2 + (a1 + ã1) s+ (a2 + ã2)
(14)

where

a1 = Kv
J

ã1 = 4(Kc−jD)
πAvJ

a2 = m
J

ã2 = 0
(15)

Likewise, if the amplitude Ax is controlled, then the ampli-
tude Av can also be determined from Av = ωAx = −jsAx. In
this case the transfer function from R(s) to X(s) is given by:

X(s)

R(s)
=

1

J
· 1

s2 +
(
b1 + b̃1

)
s+
(
b2 + b̃2

) (16)

where

b1 = Kv
J

b̃1 = 0

b2 = m
J

b̃2 = 4(jKc+D)
πAxJ

(17)

These models are useful since they can be directly compared
with the classic spring-mass-damper model:

X(s)

R(s)
=

1

J
· 1

s2 + 2ζωns+ ω2
n
. (18)

Several things are worth noting here:



1) The nonlinear effect is inversely proportional to Av,
Ax, and J .

2) If the amplitude Av (velocity) is held constant
throughout a single measurement then

• a2 = ω2
n (the undamped natural frequency) is

constant,

• a1 + ã1 = 2ζωn changes, and

• as Av goes up ã1 drops so ζ (the damping ratio)
drops.

3) If the amplitude Ax (position) is held constant
throughout a single measurement then

• a1 = 2ζωn is constant,

• a2 + ã2 = ω2
n changes, and

• as Ax goes up ã2 drops so ωn drops and ζ goes
up.

4) It is difficult to analyze what happens when the am-
plitude R (reference) is held constant through a sin-
gle measurement, but one could speculate that some
combination of the above two behaviors would be ob-
served.

This model is extremely useful to qualitatively understand
what should be observed from laboratory measurements of the
system. It is also analytically tractable. There are problems
however. The first is that preload model of nonlinear spring
is not physical. Secondly, simulations of this model do not
quantitatively match our lab measurements, so this model was
not pursued further.

3.3 Preload Velocity Feedback Plus Two Slope Posi-
tion Feedback
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Figure 4: Disk Drive Arm Mechanics: This models measurements
made by putting voltage directly into the coils. Sensing done with
a Laser Doppler Vibrometer (LDV). The system is open-loop i.e.,
there is no track following.

In an attempt to improve the correspondence with lab-
oratory measurements several position feedback (nonlinear
spring) models were tried. Among them was a spring constant
that saturated. However, further laboratory measurements
pointed the way towards a different multiple slope spring. The
effective spring constant, calculated from the spring lines of
frequency response plots taken at different input amplitudes,
showed a two-slope behavior.

The nonlinear mechanical model is shown in Figure 4, where
the feedback from velocity is a standard Coulomb friction and
viscous damping term and the feedback from position is a two-
slope spring. The results in Figure 5 show that an excellent
match has been achieved between laboratory measurements
and model measurements. Work has also been done to achieve
matching in the time domain. Results on this work are pre-
sented in Part II of this paper[6].
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Figure 5: Matching the Model: Arm Mechanics Only. Solid line:
lab measurement, Dashed line: simulation measurement. 2 mV,
5 mV, & 10 mV input to coils in both lab and simulation.
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Figure 6: Matching the Model: Mechanics only, with once around
operation. Solid line: lab measurement, Dashed line: simulation
measurement. 5 mV, 10 mV, & 20 mV input to TFin in simula-
tion. 10 mV input to TFin in lab.

4. Using the Nonlinear Model

Given that a reasonable match has been achieved in the fre-
quency domain, the question arises in how to use this mechan-
ics model. One idea is to use the improved mechanics model in
an overall model of the system that includes the periodic mo-
tion caused by the actuator following the spindle eccentricities
– commonly called once around . The mechanics model must
be adjusted to account for the effect of the power amplifier.
The model, complete with elements such as the power amplifier
and the digital compensator, allows us to make some predic-
tions about how the closed-loop system will behave. These
can later be verified by direct measurement.

Earlier measurements of the system running in closed-loop
revealed that the pivot nonlinearity showed up in the me-
chanics only, closed-loop, and open-loop responses. Further-
more, this nonlinear behavior seemed to be independent of
the swept-sine input amplitude. This was particularly confus-
ing since one expects that amplitude dependent nonlinearities
will show some amplitude dependence . This apparent paradox
was resolved using the model in closed-loop simulations. It
was observed that not only did the nonlinearity show up in
the mechanics only, closed-loop, and open-loop responses, but
the once around (simulating the motion of following spindle
eccentricities) acts as a 90 Hz “dither” to alter the nonlinear
system’s operating point. Effectively this keeps the system in a
high input amplitude region of nonlinearity. Thus, the closed-
loop system becomes relatively less sensitive to variations of
the swept-sine input amplitude. This is shown in Figures 6
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Figure 7: Matching the Model: Closed-loop, with once around
operation. Solid line: lab measurement, Dashed line: simula-
tion measurement. 5 mV, 10 mV, & 20 mV input to TFin in
simulation. 10 mV input to TFin in lab.
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Figure 8: Using the model: changing nonlinear parameters affects
closed-loop response. In this case the upper spring slope of the
position dependent nonlinearity is altered. Once around is being
followed. The lines correspond to 30 Hz, 60 Hz, & 90 Hz “high
amplitude” resonance.

– 7. Figure 6 shows a measurement of the system mechanics
while the once-around is being followed. Figure 7 shows labo-
ratory measurements and model simulations of the closed-loop
system dynamics. Note that it appears that there is a gain
difference of approximately 2 dB at low frequency between
the measurement and simulation results. This is likely due to
some amplifiers in the laboratory testbed that were not prop-
erly accounted for in the system model. Note that although
the once-around desensitizes the measurements to input ampli-
tude variations, variations in the nonlinear parameters should
show up in the responses. This is verified in Figure 8.

Finally, one could predict that if the open-loop measure-
ments of Figure 5 were repeated with a 90 Hz signal summed
into the coils of the arm only testbed, then these measurements
would be desensitized to swept-sine amplitude variations. An
experiment was done that verified this prediction, however the
data is not presented here.

5. Summary

The swept-sine describing function method described previ-
ously [2] has been used to characterize the nonlinear dynamics
of a small disk drive. A key discovery is that the frictional
behavior is not determined soley by velocity feedback or po-
sition feedback, but by a combination of the two acting at all
times. This is in contrast to the classical preload (Coulomb
plus viscous) model of friction[5] which assumes only velocity
dependence. Conversely, the work done by Dahl and others

found a friction model for ball bearings that depends only on
position[7, 8, 9]. However, many of these measurements were
made with the velocity held constant. In effect by holding ve-
locity constant, it is impossible to study velocity dependence.
By allowing both position and velocity dependence, this model
has produced a closer match to laboratory measurements than
either of these constructs on their own.

As it is, this model does allow quite a few predictions to be
made about the actual and future systems. These predictions
can be tested in the frequency domain on the model by us-
ing the swept-sine/describing function method. Of course, the
describing function generated by the swept-sine measurement
does throw away data about the higher harmonics of the re-
sponse. Thus, while it is extremely useful for characterizing
the actuator pivot bearing friction, it is incomplete. Part II of
this paper discusses comparisons done with hysteresis loops in
the time domain[6] and reconciling these with the results here.
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