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Abstract— Although phase-locked loops (PLLs) are arguably
the most ubiquitous control loop designed by humans, system
theory analysis seems to lag behind the practice of implemen-
tation. In particular, full simulation of PLLs is rare. This paper
will explain the reasons for this and offer an efficient and
flexible simulator for PLLs. This part presents the simulator
requirements and design. Part II [1] presents post processing
methods and shows a design example.

I. INTRODUCTION
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Fig. 1. Simulation block diagram for a classical digital phase locked loop.
On the left side of the diagram: data, VCO, and phase detector simulated
with component level blocks that are very efficient. On the right side of
the diagram: filters and modulation bandwidth are simulated using designs
from Matlab that are very flexible and derived from lab measurements.

Simulation of phase-locked loops varies dramatically de-
pending upon the type of loop involved, but generally is
beset by the fundamental issue that PLLs operate in two
time scales. The first is the very fast time scale of the
input signals to the phase detector (namely the reference
or data signal) and the output of the oscillator (typically a
voltage controlled oscillator (VCO) for analog systems and a
numerically controlled oscillator (NCO) for digital systems).
The second is the relatively slow time scale of the signal’s
phase; often called modulation domain. The actual loop itself
operates in both domains, although examining the signals at
various points in the loop would make one more apparent
than the other. Because of these two domains, PLLs are
inherently stiff systems, and these are difficult to fully and
accurately simulate. In modern communication and computer
systems, the clocks run in the multiple megahertz to gigahertz
range while the loop bandwidth itself may be only several
kilohertz.

The stiffness of the problem – the 3 to 6 order of
magnitude difference in time scales – provides significant
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difficulties in achieving all of these objectives. Generally, a
simulation step size which is small enough to clearly observe
the dynamics of the phase detector makes it difficult to
observe the dynamics of the entire loop. In particular, the
simulation time needed to observe the baseband behavior of
the phase error and the VCO phase leads to long simulation
times and massive amounts of stored data.

For this reason, it is quite typical to break up the simula-
tion of PLLs into two pieces. A given simulator will work
in one frequency range.

• First, a simulator is written for the high speed sections.
A time domain/signal space simulation is done on
loop components using very high frequency signals.
That is, the data input, VCO, and phase detector are
simulated together with no feedback from the output of
the phase detector to the VCO. Instead, various phases
are introduced for the various types of input data to
verify that the phase detector behaves as desired.

• Once the behavior of the phase detector has been
verified, a modulation domain/phase space simulation
at relatively low frequencies on the baseband model
of the complete PLL is done. The VCO is replaced
by an integrator and the phase detector is replaced
by its baseband model. Instead of an actual data and
clock input to the phase detector, only an input phase
modulation and a VCO phase are used. This simulator
is used to analyze the loop properties.

This two step solution eliminates most of the issues with
the stiffness of the PLL, but it suffers from the fact that nei-
ther simulation gives a picture of the complete model. This
two piece simulation method breaks down when the loop
bandwidth is very high and when the designer is concerned
about interactions between high and low frequency sections.

• The effect of the input signal (not just it’s phase) can
have a strong effect on the behavior of PLLs. For
example, in a modern communication signal using NRZ
data, the absence or presence of a transition indicates
a bit of data. However, digital phase detectors respond
differently to data streams with lots of transitions as
opposed to those with few. Thus, the effect of the data
on the phase behavior cannot be studied.

• The high frequency components have parasitic signals
present. For example, the simplest PLL phase detector
will respond to an input signal at frequency f0 by
producing a baseband component and a signal at 2f0.
The modulation domain simulation cannot include this
effect and thus, the effectiveness of the various filters



in the loop cannot be tested.

Furthermore, there are further issues with not simulating
the entire loop over both frequency bands, particularly in
cases where the time constants of the data and phase are
not so separated. This can happen when either the loop
bandwidth is very high, so as to be within a factor of 20
of the signal frequency. Furthermore, digital phase detectors
are only linear in the baseband (signal phase space). The
interaction of their dynamics with that of the loop are worth
studying. Finally, Bang-Bang phase detectors have no limit
on their bandwidth. Thus, it is hard to conclusively state
that their dynamics are separate from the filter dynamics. The
signal phase space model of the Bang-Bang phase detector is
a relay (signum function) and this model also has frequency
content up to high (infinite) frequency. Thus, a complete loop
simulation helps us to truly understand these.

Modern computers should allow us to think differently.
There is no reason why a full time domain simulation cannot
be run for a large number of samples so that both the high
frequency behavior and the low frequency behavior can be
studied. This paper presents such a simulator.

II. SIMULATOR REQUIREMENTS

It is common for scientists and engineers to generate
simulations of their specific systems in a single, mono-
lithic program. However, to make this simulator generally
applicable to multiple types of PLLs, there were several
requirements that would have to be addressed.

Looking at Figure 1, there are high speed blocks and low
speed blocks. Each of these could represent multiple possible
technologies. For example, a phase detector may be analog
or digital, may be a simple XOR gate or a more complicated
clock-data recovering phase detector. The data generator may
need to generate digital or analog data, and may need to
model various disturbances to the phase of that data. The
loop designer will want to model multiple types of filters
for loop shaping. Thus, a simple set of requirements for a
simple yet generally useful simulation include:

• Modularity: An obvious requirement is modularity, in
the high speed components, the low speed components,
and the hybrid components (the roof filters and the VCO
models). Inherent in these are interfaces to the other
blocks that are consistent enough so that exchanging
these components is straightforward.

• State knowledge: One caveat of modularity is that
each of these modules must be able to preserve their
own internal state, so that information is not lost be-
tween time steps. Without this capability, the simulator
must either work on a large set of global variables or
must pass a large set of parameters to each of the
routines. Furthermore, the size of the parameter list
needs to be adjustable, since the coefficients and state
information for a tenth order filter needs more memory
than that for a second order filter. (This may seem
obvious once stated, but is the kind of thing that has
to be considered explicitly when building such tools.)

• Extensibility: There should be the ability to add new
phase detectors and signal generators that are extensions
of older ones. Part of this comes from modularity, but
another part comes from an iterative design approach.

• External post processing capability: While there
is a need and desire for the simulation loop to run
quickly to generate the closed-loop data, there would
be tremendous benefits from making the simulation data
accessible to other environments for post processing.

• Filter design: From a loop shaping perspective, we
want flexibility in the filter design for loop filter. Once
the high speed components are set, a good simulation
will allow the designer to drop new filter designs into
the loop easily.

Figure 1 shows a block diagram for a simulation of
a clock-data recovery (CDR) loop. In this case, the loop
to be simulated is a classical digital PLL (CDPLL) [2],
which receives digital input and a square wave clock as
inputs to the phase detector, but does all of the filtering and
clock generation using analog components. This particular
simulation example provides a series of issues that must be
dealt with in PLL simulation:

• The data input signal and the VCO generated clock must
approximate a set of digital signal values.

• Any data generated for the simulation must run in the
time domain.

• The phase detector must respond to these digital levels
and produce an output. The output of the phase detec-
tor will generally have a baseband component and a
component of higher frequency than the inputs.

• The simulation must have a small enough time step to
accurately represent these signals. In particular, for most
digital phase detectors, the minimum resolution of the
phase will be directly proportional to the minimum time
step of the simulation.

• The filtering and the control of the VCO generally
take place at significantly lower frequencies than the
operations of the phase detector and data generator.

• Simulations must be run long enough to allow the
dynamics in the modulation domain to be examined.

III. A HYBRID C/C++/MATLAB SIMULATOR

For reasons mentioned in Section I, most standard sim-
ulator packages fall short of what is needed. The larger,
detailed circuit simulation packages that can simulate each
component in detail are far too cumbersome for a full loop
simulation of any length. The modulation domain packages
lack the time domain information.

It seemed that the only way to be able to do a full closed-
loop simulation of the time domain response was to generate
one in some high level language. However, it seemed that in
order to get the loop efficiency needed, CAD environments
and block diagram simulation tools had to be avoided.

The compromise was to write a modular simulation in
C++. This was chosen because the author already had some
useful data generation routines in C, but found that in
order to get the extensibility needed for the simulation, an



object oriented approach was needed. Furthermore, the object
oriented approach provided the ability to preserve the state
of each of the components, since each of the components
could be build upon a class library that had its own static
variables.

Thus, the advantages of the approach chosen were:

• The simulation was built on simple component models
in C++. This made the actual loop execution very
efficient and fast.

• High speed components such as phase detectors could
be built from simple components in a class library. This
allowed a large set of loop types to be simulated without
altering the specific structure of the loop.

• Loop filter designs could be imported from Matlab via
a simple ASCII file interchange format.

• Loop simulation data could be saved to Matlab for
post processing using the Matlab API. Extensive data
analysis and plotting were then done in Matlab.

With this architecture, we can do complete loop simu-
lations in the time domain without having to simplify the
model any further. This allows simulation of long runs of
data in reasonable time. The long runs of data allow the PLL
simulation results to be compared to long measurements of
hardware in the laboratory. Specific examples of tests that
can be run are:

• Measuring data induced noise in the PLL signals.
Specifically as PLLs are used in jitter measurements,
it is helpful to know how the data induced noise in the
PLL affects the overall measurement of jitter in a signal.

• Measuring the effects of loop design on jitter of the PLL
signals, both those passed by the PLL from the input
and those generated by the PLL itself.

• Measuring the spectral resolution of a particular PLL
architecture. That is, the ability to estimate the spectral
resolution of a given PLL architecture, and how it is
affected by input noise and the data patterns.

These are all tests that cannot be run on a conventional
PLL simulation system, simply because the overhead of the
simulation makes long data runs impractical. At the other
end of the spectrum, simple one-off simulations lack the
flexibility to test a variety of architectures.

Thanks to the object oriented nature of the simulator and
the use of Matlab to generate filter designs (described in
Section V-A), it is possible to add almost any of the PLL
components of a PLL block diagram to this simulator, albeit
with a bit more work. This may involve more work than
adding a block to a simulator such as Simulink, but the block
once added will have minimum overhead. In the following
sections, features of this simulator, as they apply to different
loop blocks, will be described.

IV. FAST COMPONENTS

The class libraries for the fast components are built on
the idea that the simulation will be more accurate if it is
built upon the actual solution of simple differential equa-
tions, rather than on doing numerical integration of those

components. Thus, devices such as digital phase detectors
are composed of simple component class library. There are
classes for logic gates, latches, and flip-flops. These include
the ability to add first order dynamics (transport lag and
propagation delay) to each of these objects. The primitive
objects are run as ideal logic elements, followed by code
that propagates the true state. This allows us to add realism
at the lowest logic level of the simulation, if that is needed.
The transport lag and propagation delay are parameters of
the logic family, which can be set in the initialization of
the simulator. Furthermore, the time constants were adjusted
for digital logic, in that rather than representing the time it
takes to go e−1 times the distance to go, it represents the
50% distance from one state to another1.

A. Phase Detectors
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Fig. 2. Block diagram for a simple mixing phase detector, most often
found in analog PLLs and often mimicked in software PLLs [3].
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Fig. 3. Block diagram for a simple XOR phase detector. The XOR
phase detector behaves as a mixer would behave if the inputs to the mixer
were saturated. Thus, it is the digital signal “analog” of a sinusoidal phase
detector.
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Fig. 4. Block diagram for a Bang-Bang phase detector used in clock-data
recovery PLLs.

The first step for any PLL design is the phase detector.
Without a means of detecting the relative phase of an input
signal and some sort of clock, there is no PLL. So, the
design of phase detectors is critical. As described in [2],
phase detectors vary greatly by the type of input signals that

1This suggestion made by Rick Karlquist of Agilent Labs.
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Fig. 5. Block diagram for a Hogge phase detector used in clock-data
recovery PLLs.

they deal with. Signals that deal with modulated sinusoids
can be examined with a sinusoidal phase detector, which one
gets by mixing the input and clock signals. At the other end
of the spectrum are complex logic phase detectors such as
the Alexander (or Bang-Bang) phase detector and the Hogge
phase detector.

From these primitive objects, I am able to construct classes
for phase-detectors. Among the phase detectors available for
simulation are:

• Mixer (sinusoidal): memoryless, ideal element used
in pure analog PLLs [4]. The starting point of most
analyzes is shown in Figure 2. This responds well to
zero centered input signal.

• Exclusive OR (XOR): memoryless, ideal element used
in classical and digital PLLs [4]. Unlike the mixer, this
is typically used with digital logic levels. This is shown
in Figure 3.

• Hogge: linear phase detector using flip-flops and gates
that can recover phase from NRZ data [5], [6]. This
requires that the VCO clock period be the same as the
data (bit) period. This is shown in Figure 5.

• Bang-Bang: binary phase detector using flip-flops that
can recover phase from NRZ data [7], [8]. This requires
that the VCO clock period be the same as the data (bit)
period. This is shown in Figure 4.

What is important to note about these different phase
detectors is that some require digital logic blocks, some
require flip flops, and all require some math. By having a
class library of primitives for these components, it is fairly
easy to construct and test any of these (or other) phase
detectors.

B. Simulating Analog Behavior of Digital Logic

An important piece of the realism of the simulation was
suggested by Rick Karlquist of Agilent Labs. The underlying
circuit implementation of digital logic involves switching
based on voltage levels where these levels rise and fall in an
analog way. This analog rise and fall can usually be modeled
by a simple differential equation.

The propagation delay, Td is the time between the ap-
plication of as signal to the circuit input to the time when
the circuit input starts to change. This resembles the classic
transport delay of linear systems. The switching time, τs

determines the time it takes for levels to move from one

Td
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Fig. 6. Diagram of witching logic levels simulated in the circuit. The
ideal switches are delayed, then passed through a first order low pass filter.
The logic is considered switched when the output voltage rises above the
halfway threshold.

logic level to 50% of the distance between logic levels. This
is shown in Figure 6.

To model these switching times, we use the solution of a
first order differential equation:

V (tk+1) = (VNL − V (ts,i))
(

1 − e−
t−ts,i

τs

)
, (1)

where
• VNL is the new desired voltage level. In a binary logic

system, there are two voltage levels for logic, and thus,
VNL can be VL or VH (low and high) depending upon
what the original level was.

• V (ts,i) is the output voltage of the circuit at the time
of a logic switch.

• ts,i is the time of the ith level switch
• τs is the switching time constant of the circuit.
Thus, each circuit block has an input section based on

“analog” inputs from other circuit blocks. The decision based
on an input is delayed by Td, but with this delay the decision
threshold is applied to those inputs. This determines the
ideal logic state of the ideal logic circuit. If this logic state
represents a switch from the previous logic state, then the
output of the circuit is determined by (1). Note that as (1) is
the solution of the differential equation, it does not depend
on the system sample rate for accuracy. This allows the
simulation time to be slower away from a switch point than
it would need to be otherwise.

C. Multi-Rate Simulation of Digital Components

Early simulations showed that all the digital phase de-
tectors suffered from the ability to resolve time properly.
This was a limitation due to the time quantization of the
simulation and the fact that the clock and data signals into the
phase detectors were binary (0/1). To remedy this, a multi-
rate simulation feature was used which works as follows:

• At a time, t, the simulator predicts forward one simu-
lation time step, t + Tsim, to see if the output of either
the VCO or the reference input will change.

• If it detects a change in any of these, it ups the
sample rate of the simulation by a multi-rate factor,
MR Factor.

• It runs the VCO and the reference generator using this
faster sample rate and then feeds the outputs of these
into either

– an averaging filter or



– a single pole analog low pass filter.

The averaged/analog filtered output is then sent to the
loop filter. The increased time resolution is effectively
converted into a voltage resolution which the loop filter,
running at a slower rate, can make use of.

D. Data Inputs

The data inputs will vary greatly depending upon the
type of loop to be modeled. A loop that merely has to
lock to the phase of a largely sinusoidal signal will need
fairly simple inputs. On the other hand, simulating commu-
nication systems would require something that looks like
digital data. Often, this is generated using Pseudo Binary
Random Sequences [9], [10]. In this case, the digital data is
generated with a sequence generator, where the bit frequency
is substantially below the clock frequency of the simulator.
Another component of this class can then be used to disturb
the phase of the data signal in a prescribed way. For example,
noise can be added to the time of a transition. Alternately,
a sinusoidal variation can be added to the transition time.
Because the true data is known, and the variations added
are known, this allows for a significant amount of post
processing once the simulation has run.

E. Analog Filters

There are some extra features to this simulator that make
it more accurate than it would be otherwise. I have added
a class of first order analog filters. These are analog in the
sense that their output is taken from the closed form solution
to a first order differential equation which describes the filter
(including time constants), as discussed in Section IV-B. This
allows me to do some averaging in some convenient places.
Furthermore, at any point in time, the output of the filter is
accurate in the sense that one simply reads the solution for
a given time, rather than over a quantized time interval.

F. Oscillators

There is also a class of oscillators which can be either
sinusoidal or square wave type. The oscillators can be used
as data inputs, modulators, or as VCOs. To use as VCOs,
one simply needs to set the phase of oscillator using the
output of the PLL loop filter. The oscillator classes define
routines (called methods by the object oriented programming
folks) that allow the user to set the input phase in radians or
degrees. Radians are useful, because these are the physical
units that the control voltage to a VCO would use.

Currently, the sine wave oscillators are zero centered and
the square wave oscillators swing between 0 and 1. This
matches their typical use in analog and digital systems,
respectively. However, it is not difficult to define an offset
for either one that will change what it swings around.

V. SLOW COMPONENTS

A. Filters

There is also a filter class which can include FIR and
IIR filters. The filters themselves are read from a specially
formated ASCII file with a .flt or .svo extension. The key

feature here is that the filter can be written from Matlab,
allowing a filter analysis and design to be done in Matlab
and then have this transferred easily into the fast simulator.
So, an ideal filter response can be generated in Matlab, say
by matching the measured frequency response of a prototype,
and then a discrete equivalent can be formed and saved to
the .flt or .svo file.

The salient feature of these file formats is that they allow
a linear system that has been written from Matlab to be read
from a C/C++ program without the latter having any prior
knowledge of the system organization. The .svo format was
created for general MIMO systems, while the .flt format is
a simplified version that focuses on SISO transfer function
forms of FIR and IIR discrete filters.

Because of the inheritance of object oriented methods
(such as used by C++), a general filter class can be defined,
with subclasses for FIRs and IIRs. The class constructors of
these different types will have similar methods, but adapted
to each subclass. One of the advantages of object oriented
methods is that the calling routine doesn’t have to know
whether the filter being created based on the .flt file is an IIR
or FIR. As the file is being read, the appropriate constructor
function (method) can be called once the line containing the
filter type is found.

Running the filters in the simulator also require some
cleverness, due to the possible need to run part of the
simulator faster than the filters. Because the filters are stored
as discrete time filters, one cannot simply change their
sample rate. Thus, if the simulator sample period changed,
it would compromise the filter. Instead, the filters are run as
follows:

• When the filter is initialized, the current simulator time
is stored into the filter class.

• Using the filter sample period, Tfilter, the next update
time for the filter is calculated.

• At each time step, the PLL simulator checks the current
time, t, against the next update time, tNextUpdate, for
the filter.

– If t < tNextUpdate, the old filter output values are
used.

– If t ≥ tNextUpdate, the filter is run.
The filter also has two modes, which either lock to the
original update time, or slip the next update time so
that it is exactly Tfilter past the current time. When
the filter sample time period is an integer multiple
of the simulator sample time period, their operation
is identical. However, since we cannot guarantee this,
these modes let the user choose how to handle the
mismatched times. The latter guarantees that the filter
always runs at a rate less than or equal to its designed
update rate. The former (which is the mode I prefer),
guarantees that on average the filter will run at its
designed sample rate.

B. VCO Input

Although the output of a VCO or NCO is at high fre-
quency, the input control voltage is at low frequency in



the baseband. Furthermore, there is a modulation bandwidth
– essentially a low pass filter on the control voltage. This
can be modeled by using a low pass IIR filter on the end
of the loop filter. Laboratory spectrum measurements of
prototype VCOs can be matched in the frequency domain,
and then modeled in the simulator with a discrete equivalent
as described in Section V-A.

VI. POST PROCESSING

Post processing will be discussed, along with some ex-
ample simulation results, in Part II of this paper [1]. Suffice
it to say, that time domain plots, frequency domain plots,
and histograms are all facilitated by having dumped the fast
simulation data into Matlab .mat files.

VII. CONCLUSIONS

Part I of this paper has tried to show how to generate a
flexible and efficient PLL simulation. Part II of this paper [1],
will discuss post processing the simulation data and present
a design example.
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