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Abstract: This paper presents some insights on introducing control concepts to middle and
high school STEM students. It summarizes the author’s experience in introducing control to
such students at multiple workshops preceding control conferences. In Part 1 (Abramovitch
(2019)), we share here the ideas behind the success of these talks. In Part 2 (this paper), we
show how to discuss control systems math to students who have not had calculus or differential
equations.
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1. INTRODUCTION TO PART 2

Part 1 of this paper (Abramovitch (2019)) discussed the
need for a more complete public knowledge of the concepts
behind, the ubiquity of, and the methods used in feedback
control. It was focused on how to make these relevant
to middle and high school students interested in Science,
Technology, Engineering, and Math (STEM) subjects. One
of the greatest challenges with such a task is that these
students have almost universally not learned about dif-
ferential equations, linear algebra, and transform theory.
Only the upper level high school students are likely to have
had a physics class or integral or differential calculus. This
makes presenting the math that underlies control systems
hard to explain. However, we do have some avenues still
available to us.

What we can count on is that they have had some algebra,
that they have seen geometric proofs (an introduction
to theorem-proof methods), that they are familiar with
finding the roots of a second order polynomial with the
quadratic equation, and they are familiar with localizing
roots of higher order polynomials.

We have found that students respond well to being told
the following:

• To understand what the systems we want to control
are doing and how our control will affect them,
we need to model the systems using science (to
derive models) and math (to put the models in a
mathematically form that helps us predict what will
happen next).

• It takes about 3 years of math from where the average
student in the room is at that point. (It will be a bit
more for the middle school students, a bit less for the
upper level high school students.)

� Daniel Y. Abramovitch is a system architect in the Mass Spec
Division at Agilent Technologies.

• We cannot hope to teach them the math they need
in the time we are with them, but we can teach them
what the math tells us and how it helps us.

The students respond well to this sequence. We can follow
up by describing the kind of math that they will be
learning. They will learn differential and integral calculus
that will tell them the beginning of how things move.
The integrals will allow them to do transforms (Laplace,
Fourier, etc.) which have the convenient property that
they turn differential equations into algebra. Once we get
to algebra (which they know), their old friend of finding
the roots, allows them to understand the system behavior.
Now we have tied something they know to something we
need to know to understand control systems.

2. NEWTON AND THE RIGID BODY
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Fig. 1. A rigid mass on a frictionless plane is the starting
point for understanding Newton’s Law.

Most students in this age group will have seen at some
level, Newton’s Second Law: f = ma. We can tie this to
a simple mass on a frictionless plane, as shown in Figure
1. Now, we remind them that acceleration is the second
derivative of position. Some of the high school students
have had differentiation, but most can understand that ve-
locity is the change of position over time, and acceleration
is the change in velocity over time. Thus we can rewrite
f = ma for them as:
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Fig. 2. Response of double integrator to force applied over
finite time.
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Fig. 3. The block diagram of the double integrator achieved
when we ignore the initial conditions and use Laplace
Transforms.
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Again, they don’t have to know how to do integrals, but
we have led them to the idea that these matter and that
they allow us to describe the physical system of Figure 1.
Equation 1 has two integrals and so this system is called a
double integrator, and it shows up a lot. One can imagine
an air hockey puck on an infinite table. In each case, if one
taps the puck, it has a constant velocity. However, if we
push it with a constant force, it accelerates as long as the
force is being applied. This is displayed in Figure 2. The
top plot is the applied force, the middle plot is the velocity
of the block, and the bottom plot is the position. We will
use these types of plots to explain the behavior of different
systems under control both open loop and closed-loop.

Here is where we need them to trust us. We tell them that
there are a set of special integrals (Bracewell (1978)) which
allow us to transform equations such as Equation 1 into
algebra. Thus,

x =

t�

0

t�

0

(a)dtdt ←→ X(s) =
1

ms2
F (s)

Time Domain (math) Transform Domain (2)

When we are done, from the transformed math we know
that this system is not stable. That is, if we push the block
on the frictionless plane, it will go on forever. Once we
stop pushing, the velocity remains constant (middle plot),
but the position keeps increasing. That being said, it is
easy to control. That is, if we apply the same amount
of force in the opposite direction for the same amount
of time, the block stops. Finally, a lot of systems look
like this (assuming we do not look too closely). Even
without imagination, this shows up in most spacecraft
control problems, since there is no air to generate friction
and no spring force of gravity.

The above discussion has shown how we can lead the
students along a path that is supported by a lot of
knowledge they already have to the concept of a dynamic
system and its stability. Not only have we discussed it
qualitatively, but we have tied it into the physics of the
problem (using an equation that they almost certainly
know), and we have discussed some of the useful tools
(transforms) that we use to understand the problem.
Finally, they have seen an example of this behavior plotted
out. With this, they are ready for the next step: adding
feedback into this problem.

3. ADDING FEEDBACK TO DOUBLE INTEGRATOR

f x
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m

Fig. 4. Adding a spring and a damper to our original mass
block.
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Fig. 5. The block diagram of the double integrator with
velocity and position feedback.

One of the great pedagogical things about laying out the
double integrator as we have done above is that now we can
transform it to a spring-mass-damper system by adding a
position feedback (k) and a velocity feedback (b). We are
in a position to describe these not only in the picture of
Figure 4, but in the block diagram of Figure 5. Equation
1 gets modified to be:

mẍ = f − bẋ− kx ←→ X(s)

F (s)
=

1
m

s2 + b
ms+ k

m

,

Time Domain (math) Transform Domain (3)

where we see these feedback terms showing up explicitly
in the time domain equation and this is transformed on
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Fig. 6. Response of double integrator with velocity and
position feedback to force applied over finite time.
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Fig. 7. We can even show them a Bode plot; not by telling
them all the math, but by explaining to them what it
means to us.

the right into a relationship which we can introduce to
them as a transfer function. On the transfer function side,
they see that if we set k and b to 0 we are back at our
double integrator case. Furthermore, we can relate the
second order relationships of k and b and m to those of
an oscillatory system by matching coefficients in Equation
4 which relates the spring and damper parameters to that
of a simple resonance:
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Now, they have almost certainly seen that when they try
to solve for the roots of a quadratic polynomial and the

number under the radical is greater than 0, the roots
are real, but if the quantity is less than 0, things get
weird. Some of them will know that this produces complex
numbers. We can use this to introduce the idea of a Bode
plot with Figure 7. Many STEM students will have seen
something like this when they are looking at specifications
for things like headphones (or ear buds). They might not
understand what they saw, but it’s straightforward enough
to explain to them that the top plot would be like one they
might have seen, except that they’d never want to buy ear
buds if the response showed that resonance. They’d be
looking for something flat. In buying ear buds, they would
never see the lower plot, which is the phase – the relative
angle of output to the input. Again, this is a teachable
moment in that we can explain to them that worrying
about this lower plot is one of the main differences between
folks who work in signal processing and folks who work in
feedback systems. We can come back to it later, but we
can tell them that the plot relates the response and helps
us understand what is going on even without a computer.
We can tell them that from a plot like this, we can tell that
the roots of that denominator polynomial are complex, and
that if the system gets hit with something like a step in
force, it will oscillate (ring) back and forth before settling
down.

Now, we have gone, in very straightforward steps, from a
double integrator system to one with feedback from the
outputs of both integrators. We have shown them that
using some math they don’t have (differential equations
and transform theory) and some math that they do have
(algebra and root finding) that they can understand or
“model” the behavior of this very physical system. Equa-
tions 5 and 6 tell us about the behavior:

• k/m tells us how fast it rings.
• b/m (in relationship to k) tells us how long it rings
• Making k bigger means the spring is stiffer, which
results in higher frequency ringing.

• Making b bigger relative to k causes the ringing to
damp out faster.

• Because denominator polynomial is 2nd order, we can
get roots with quadratic equation.

• Any polynomials that are more than 2nd order are a
lot harder.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
o
s
it
io

n

Compensated System: K_n =  1, f_d_fsf =  8, zeta_d_fsf =  0.1

 

 

Force

Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
o
s
it
io

n

Original System: K_n =  1, f_d =  8, zeta_d =  0.3

 

 

Force

Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
o
s
it
io

n

Original System: K_n =  1, f_d =  8, zeta_d =  1

 

 

Force

Position

Fig. 8. Double integrator with spring and damper feed-
back. Resonant frequency (ωd) at 8 Hz. We show the
effect of changing the damping (ζd) from 0.1 on the
far left, to 0.3 in the center, to 1 on the far right.

To illustrate the changes we can make by changing k/m
and/or b/m we can show some relatively straightforward
plots in Figure 8. Since we have described the damping
and the oscillatory frequency as functions of b, k, and m,
we can show how changing their relationship can change
the damping and dramatically change the behavior of the
system. We have introduced these as properties of the
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Fig. 7. We can even show them a Bode plot; not by telling
them all the math, but by explaining to them what it
means to us.

the right into a relationship which we can introduce to
them as a transfer function. On the transfer function side,
they see that if we set k and b to 0 we are back at our
double integrator case. Furthermore, we can relate the
second order relationships of k and b and m to those of
an oscillatory system by matching coefficients in Equation
4 which relates the spring and damper parameters to that
of a simple resonance:
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Now, they have almost certainly seen that when they try
to solve for the roots of a quadratic polynomial and the

number under the radical is greater than 0, the roots
are real, but if the quantity is less than 0, things get
weird. Some of them will know that this produces complex
numbers. We can use this to introduce the idea of a Bode
plot with Figure 7. Many STEM students will have seen
something like this when they are looking at specifications
for things like headphones (or ear buds). They might not
understand what they saw, but it’s straightforward enough
to explain to them that the top plot would be like one they
might have seen, except that they’d never want to buy ear
buds if the response showed that resonance. They’d be
looking for something flat. In buying ear buds, they would
never see the lower plot, which is the phase – the relative
angle of output to the input. Again, this is a teachable
moment in that we can explain to them that worrying
about this lower plot is one of the main differences between
folks who work in signal processing and folks who work in
feedback systems. We can come back to it later, but we
can tell them that the plot relates the response and helps
us understand what is going on even without a computer.
We can tell them that from a plot like this, we can tell that
the roots of that denominator polynomial are complex, and
that if the system gets hit with something like a step in
force, it will oscillate (ring) back and forth before settling
down.

Now, we have gone, in very straightforward steps, from a
double integrator system to one with feedback from the
outputs of both integrators. We have shown them that
using some math they don’t have (differential equations
and transform theory) and some math that they do have
(algebra and root finding) that they can understand or
“model” the behavior of this very physical system. Equa-
tions 5 and 6 tell us about the behavior:

• k/m tells us how fast it rings.
• b/m (in relationship to k) tells us how long it rings
• Making k bigger means the spring is stiffer, which
results in higher frequency ringing.

• Making b bigger relative to k causes the ringing to
damp out faster.

• Because denominator polynomial is 2nd order, we can
get roots with quadratic equation.

• Any polynomials that are more than 2nd order are a
lot harder.
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Fig. 8. Double integrator with spring and damper feed-
back. Resonant frequency (ωd) at 8 Hz. We show the
effect of changing the damping (ζd) from 0.1 on the
far left, to 0.3 in the center, to 1 on the far right.

To illustrate the changes we can make by changing k/m
and/or b/m we can show some relatively straightforward
plots in Figure 8. Since we have described the damping
and the oscillatory frequency as functions of b, k, and m,
we can show how changing their relationship can change
the damping and dramatically change the behavior of the
system. We have introduced these as properties of the
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physical system itself. We are trying to understand/model
the behavior with these equations and plots to gain insight.

This structure has set them up for the next step: intro-
ducing our own augmentation to nature’s parameters.

4. INTRODUCING HUMAN AUGMENTATION OF
NATURE’S FEEDBACK

f a v x
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Fig. 9. Adding our own feedback to the spring-mass-
damper system.

At this point, we have shown them the effects of nature’s
feedback parameters on the behavior of our simple system,
and it is natural to ask, “What if nature’s k and b are
lame? Can we compensate?” The answer is – of course –
yes (or we would all need to find new jobs), but we can use
this model to show how we introduce augmented feedback
into the system as shown in Figure 9. We can describe
this as adding our own signals to feed back the output of
each energy collector (which we call a state) back into the
input of the system. If we do it right, we are – in the words
of Shrek – compensating for something. We can analyze
this to pick our parameters by looking at modifications of
Equations 4–6.

X(s)

F (s)
=

1
m
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m s+

k+kf

m
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Kω2

d

s2 + 2ζdfωdfs+ ω2
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, (7)

where

fdf =
1

2π

√
k + kf
m

and ζdf =
b+ bf

2
√
km

. (8)

We have shown the students in a very straightforward way
that we can augment nature’s feedback with our own. We
can also tell them that this is called “full state feedback”,
which is the 800 pound gorilla of control. (This gives one
a chance to explain the 800 pound gorilla joke from our
parents’ generation.)

At this point, we can show them very simply that by
cleverly choosing our feedback parameters, as shown in
Figure 10, we can dramatically improve the system’s
behavior. By adding a little bit of damping (on the left)
the system rings but eventually settles down. A bit more
damping (center) and the system settles without ringing.
If we maintain this new damping and artificially increase
the stiffness of the spring, we get a higher frequency which
means that the system responds even more quickly. This
is analogous to cars that can adjust their suspensions to
the driving conditions.

The next level is to explain what happens when we get the
feedback parameters wrong. This can be simply illustrated
by showing cases where the damping gets set to 0 (on the
left of Figure 11) or even negative (on the right of Figure
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Fig. 10. Our spring mass damper with ζd = 0 and fd =
8Hz. The cyan curve shows this response, which rings
without stopping. The blue curve shows the response
of the system to the same input, when we humans
have augmented nature’s feedback. We then use our
augmented feedback to change ζd to 0.1 (far left), ζd
to 0.8 (center), and even change the frequency, fd to
20 Hz.
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Fig. 11. If we accidentally set bf = −b (left plot) we zero
out the damping of the original system and now it
rings forever. If we accidentally set set bf = −1.02b
(right plot) we have negative damping which gives us
positive feedback, and this is bad.

11). The negative damping results in positive feedback and
by then, they should have been told that when negative
feedback becomes positive feedback, bad things happen –
as illustrated by the ever increasing oscillations. Again,
this can be tied back to physical examples such as a car
swerving erratically because a driver under the influence
is compensating for the weaving far too slowly.

Looking back at what we have done: we have introduced
a simple system, shown how nature’s feedback affects
its behavior, added in our own feedback to improve the
behavior, and shown the pitfalls of making a mistake. We
have shown them modeling, feedback, full state feedback
to augment nature’s feedback, stability, and instability in a
very simple progression. What is left to do? We can shown
them what happens when we cannot measure everything
and we can show them how we use math to help us deal
with systems that are bigger than second order.

5. FEEDBACK CONTROL WITH FEWER
MEASURED OUTPUTS

The curves of Figures 13 and 14 show us that when we
only feed back information from position in this problem,
something goes horribly wrong. How do we explain this to
the students? We have to tell them about the math without
expecting them to know how to do it themselves. We tell
them instead, what it tells us. Here is where the transforms
and Bode plots that we introduced before (knowing full
well that they would not at this point be able to do
the math themselves) tell us things. Since they have seen
feedback loops in our prior discussion, we can show them
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Fig. 12. The double integrator with feedback only from the
position state.
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Fig. 13. Our double integrator system when we only feed
back position. Here we have position feedback scaling
(gains) of 150 (left) and 500 (right).
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Fig. 14. Our double integrator system when we only feed
back position. Here we have position feedback scaling
(gains) of 1000 (left) and 2000 (right).
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Fig. 15. Simplified abstract control loop. Transitioning
from the complex block diagrams to this simple ab-
straction allows us to explain the uses of Equations 9
and 10.

the simplified model of Figure 15, which is an abstraction,
something simplified so that we can get some insight from
the math. We can tell them that in the transform space,
we get ratios of polynomials from the models comprising
Figure 15:

Y

R
=

PC

1 + PC

E

R
=

1

1 + PC
U

R
=

C

1 + PC

Y

U
=

P

1 + PC
. (9)

We can point out that all four of these have the same
denominator and that this denominator governs a lot of
behavior. We can tell them as they know about these that
it’s about finding the roots of the rational equation (where
1 + PC = 0):
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Fig. 16. Bode magnitude plots of the different levels of
gain show that all we did was change the level of the
sloped line, but did not alter the shape.
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Fig. 17. Again, we use a Bode plot. On the left, our
compensator gain is 150, on the right 2000. However,
as neither has changed the phase, we eventually have
a ringing of the system.

1 + PC = 1 + k0
(s+ b1)(s+ b2) · · · (s+ bm)

(s+ a1)(s+ a2) · · · (s+ an)
. (10)

Now, the critical points of PC are often very easy, but
the critical points of 1 + PC are actually pretty hard –
especially when one is in the 1940s/1950s and doesn’t have
a digital computer to help. We know from all the equations
in Equation 9 that things get bad when 1 + PC = 0. A
long time ago, someone had the insight that this means:

PC = −1 ⇔ �PC� = 1 & � PC = −180◦. (11)

This means that if we can check the magnitude and phase
against each other, we can be careful that the magnitude
should be less than 1 before the phase gets to −180◦.
This explains our fascination with Bode plots. The plots
of Figure 17 show that no matter how big we make the
gain, we have the problem that the phase is always at
−180◦ and so when the gain gets to 1 (which is 0 dB on
this logarithmic plot), it will ring. It will ring at different
frequencies depending upon our gain, but it will still ring.

6. FAKING MEASUREMENTS: ESTIMATION

In order to fix (or compensate for) our lack of velocity
measurement, we know that we need extra information.
This is pretty obvious to the students. While control
theorists understand that we need some sort of estimate of
velocity (or derivative information), this is hard to explain
to students who have not yet computed a derivative. This
author has found that the example of Figure 18 works
spectacularly well, since almost every kid has thrown and
caught a ball. The figure represents two images of balls
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Fig. 12. The double integrator with feedback only from the
position state.
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Fig. 13. Our double integrator system when we only feed
back position. Here we have position feedback scaling
(gains) of 150 (left) and 500 (right).
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Fig. 14. Our double integrator system when we only feed
back position. Here we have position feedback scaling
(gains) of 1000 (left) and 2000 (right).
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Fig. 15. Simplified abstract control loop. Transitioning
from the complex block diagrams to this simple ab-
straction allows us to explain the uses of Equations 9
and 10.

the simplified model of Figure 15, which is an abstraction,
something simplified so that we can get some insight from
the math. We can tell them that in the transform space,
we get ratios of polynomials from the models comprising
Figure 15:
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We can point out that all four of these have the same
denominator and that this denominator governs a lot of
behavior. We can tell them as they know about these that
it’s about finding the roots of the rational equation (where
1 + PC = 0):
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Fig. 16. Bode magnitude plots of the different levels of
gain show that all we did was change the level of the
sloped line, but did not alter the shape.
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Fig. 17. Again, we use a Bode plot. On the left, our
compensator gain is 150, on the right 2000. However,
as neither has changed the phase, we eventually have
a ringing of the system.

1 + PC = 1 + k0
(s+ b1)(s+ b2) · · · (s+ bm)

(s+ a1)(s+ a2) · · · (s+ an)
. (10)

Now, the critical points of PC are often very easy, but
the critical points of 1 + PC are actually pretty hard –
especially when one is in the 1940s/1950s and doesn’t have
a digital computer to help. We know from all the equations
in Equation 9 that things get bad when 1 + PC = 0. A
long time ago, someone had the insight that this means:

PC = −1 ⇔ �PC� = 1 & � PC = −180◦. (11)

This means that if we can check the magnitude and phase
against each other, we can be careful that the magnitude
should be less than 1 before the phase gets to −180◦.
This explains our fascination with Bode plots. The plots
of Figure 17 show that no matter how big we make the
gain, we have the problem that the phase is always at
−180◦ and so when the gain gets to 1 (which is 0 dB on
this logarithmic plot), it will ring. It will ring at different
frequencies depending upon our gain, but it will still ring.

6. FAKING MEASUREMENTS: ESTIMATION

In order to fix (or compensate for) our lack of velocity
measurement, we know that we need extra information.
This is pretty obvious to the students. While control
theorists understand that we need some sort of estimate of
velocity (or derivative information), this is hard to explain
to students who have not yet computed a derivative. This
author has found that the example of Figure 18 works
spectacularly well, since almost every kid has thrown and
caught a ball. The figure represents two images of balls
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Fig. 18. Two images of a ball in the air with only position
information for each of them. On their own, there is
not enough information to catch a moving ball from
these images. A time stamp is needed on each.
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Fig. 19. Our double integrator system when we only feed
back position information. Here we have used position
and the derivative of position to make the feedback
effective and stop the ringing. On the right, we can
show them that the Bode plot helped us predict that
this would happen and how to choose the relative and
overall gains.
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Fig. 20. Here, we repeat the plot on the left of Figure 19,
because we have curves from full state feedback as
well. Thus, we are showing that using some signals to
estimate others can give us almost as good a result
(sometimes) as when we can measure everything.

in the air with only position information. Having been
through the prior material, we can all conclude that it is
impossible from only that information for anyone to catch
the ball. We then produce a soft ball and toss it to one
of the students who almost always catches it. We then get
a chance to explain the contradiction, that if the speaker
is not a nonsensical liar, something else must have taken
place.

That something can be explained as follows. Our eyes take
repeated still images (position information). Our brains

take the difference and add a time stamp. Our brains (meat
computers) are estimating the velocity of the ball from
changes in position over time. In fact, for many North
American kids who have played baseball or softball, we
can relate this to learning to play catch, how as their skill
level improved, they could catch balls thrown much less
accurately and with greater speed. This relates to their
brain learning to produce better estimates over time. For
kids from other parts of the world, similar analogies can
be made with soccer (football), tennis, etc. They get the
message: we need to teach our machine how to estimate
the velocity.

Our system that fed back everything had no issues because
it was getting velocity information. Can we somehow
estimate velocity from our position measurement, and to
do this, we need to differentiate, that is see how quickly
our position is changing over time. We are now introducing
proportional plus derivative control in doing this. In the
transform space, we can point out that this makes the
phase less negative. There is even a simple relationship for
the new controller that we can show them:

C = kf
(s+ bf )

(s+ af )
, 0 ≤ bf < af , (12)

and point out two important things: that there is a set of
algebra from our transform space that allows us to predict
what math we need to do to estimate velocity and that
this math is often very simple. We can also point out that
a lot of very useful control systems have simple guts such
as this.

When we do this, we get the response on the left side
of Figure 19, which looks pretty good. On the right, we
see that our Bode plot shows some differences, but the
main thing that we show them is that the phase is well
above −180◦ when the gain gets to 1 (0 dB). In fact, we
can splurge a bit and show them Figure 20 which has the
results of both the full state feedback and our PD feedback
and we are showing them that with a good estimate, we
can do almost as well as when we measure everything.

Again, it is worthwhile to look at the path we have taken
with a set of bright students who have not yet studied
calculus. We have shown them that we can do something
with a limited set of signals to produce estimates of the
signals we need to cause the system to behave the way
we want. We have shown them that some math that they
don’t yet have leads to some math that they already know
and that the math they already know tells us how to fix
the problem, sometimes simply. We have attached physical
meaning to the equations and examples that we use, so
that even if they don’t understand the details, they have
a very strong sense that they get the basic idea.

7. SOME DEPTH ON ESTIMATION

While we have taken the students a long way in a short
time with the previous discussion, there are some exten-
sions and abstractions that are useful because they tie
what we have been discussing to problems that they hear
about every day. We start with the example of Figure 21.
Here we have extended the simple physical example. We
can then ask:
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Fig. 21. Extending our spring mass damper system to one
with a lot more springs, masses, and dampers.
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Fig. 22. A generalized view of model based filtering

1) What if we can’t measure every “state”?
2) What if the physical system is more complicated

than our model?

The trick is that since (2) is always true, then (1) is always
true. This allows us to discuss really big, big systems
with lots of stuff that we can’t model exactly. Power grid,
air traffic control, automated highways, systems biology,
have many more things (states) than can be measured.
However, these kids are comfortable with computers, with
games, with simulations. This means that we can refer to
Figure 22 as a general metaphor for how we handle these
problems. The general process steps are:

• Build a simulation.
• Run simulation in parallel with real world.
• Compare simulation output to things we can measure
in real world.

• Correct simulation with measurements from the real
world.

In doing so, we get a lot of advantages, including that the
inside of our simulation will have useful information we
could not measure in the real world and that the student
gets to tell their friends that they work with models.

8. CLOSING COMMENTS FOR MIDDLE AND HIGH
SCHOOL STUDENTS

With such a whirlwind tour of control and system theory,
the students might very well be energized, but not know
where to go with the information. It is best to take a step
back and give them an overview here, some thoughts about
control systems and tech work in general:

• A lot of this discussion shows up in all technical
work. Ideas about making measurements, using sci-
ence to generate models, transforming those models
into mathematics, using those math models to make
predictions and improve design, and implementing
things using computer programming are fairly uni-
versal..

• Computation has gone digital, not because digital
gives better performance, but because digital gives
cookie cutter, which gives miniaturization which gives
more capability in small spaces everywhere. (They
will recognize this immediately from their own expe-
riences with smart devices.)

• To do useful things that touch the real world, you
have to understand the real world and this usually
takes modeling, and modeling takes math. (This
answers the high school students inevitable questions
in math class: “Are we ever going to use this?”)

• Some folks do math for its own sake. Scientists
and engineers tend to do math in order to enable
them to do something practical. (This draws the
distinction between different branches of STEM work
in a relatable way.)

Again, at this point, we are trying to capture their imagi-
nations for what they can do with all those math, science,
and programming classes. This author always closes with
the following set of comments about control systems and
tech work in general:

• I’m not telling you this stuff is easy. It’s not.
• Technical work takes work. There is a lot to learn,
whether you want to be a biologist, a computer
scientist, a chemical engineer, or a controls engineer.

• And every time you work on a new problem, you learn
stuff you wish you had known on your last problem.

• What makes it fun?
· A lifetime of learning.
· Understanding the world.
· Doing something about it.
· Getting paid well in the process.

9. CONCLUSIONS FOR PART 2

This author’s experience in giving such seminars to middle
and high school students in a variety of pre-conference
workshops has led them to believe that this pattern is
highly successful and can be adopted by others. In Part
1 (Abramovitch (2019)) we presented the basic concepts
that can be readily taught. In this part, we have tried to
show how we can use some simple examples to tie Newton’s
Laws to control theory. We discuss how to explain what the
math tells us without having to teach them the math itself.
Furthermore, we discuss how some of that math allows
us to turn these problems into some that they know, i.e.
algebra. This allows us to display some algebra to explain
what the math tells us about the behavior of control
systems. These methods have worked extremely well for
the author, and it is hoped that others can use them to
get more middle and high school students interested in
control engineering.
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